diff --git a/tests/python/test_models.py b/tests/python/test_models.py index a12198f59..b0eb7482d 100644 --- a/tests/python/test_models.py +++ b/tests/python/test_models.py @@ -2,14 +2,31 @@ import numpy as np import xgboost as xgb dpath = 'demo/data/' +dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') +dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') def test_glm(): - dtrain = xgb.DMatrix('../data/agaricus.txt.train') - dtest = xgb.DMatrix('../data/agaricus.txt.test') param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1 } watchlist = [(dtest,'eval'), (dtrain,'train')] num_round = 4 bst = xgb.train(param, dtrain, num_round, watchlist) preds = bst.predict(dtest) - labels = dtest.get_label() \ No newline at end of file + labels = dtest.get_label() + +def test_custom_objective(): + param = {'max_depth':2, 'eta':1, 'silent':1 } + watchlist = [(dtest,'eval'), (dtrain,'train')] + num_round = 2 + def logregobj(preds, dtrain): + labels = dtrain.get_label() + preds = 1.0 / (1.0 + np.exp(-preds)) + grad = preds - labels + hess = preds * (1.0-preds) + return grad, hess + def evalerror(preds, dtrain): + labels = dtrain.get_label() + return 'error', float(sum(labels != (preds > 0.0))) / len(labels) + bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror) + +