adding some docs based on core.Boost.predict (#1865)
This commit is contained in:
parent
b99f56e386
commit
81d1b17f9c
@ -520,6 +520,24 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
def predict(self, data, output_margin=False, ntree_limit=0):
|
def predict(self, data, output_margin=False, ntree_limit=0):
|
||||||
|
"""
|
||||||
|
Predict with `data`.
|
||||||
|
NOTE: This function is not thread safe.
|
||||||
|
For each booster object, predict can only be called from one thread.
|
||||||
|
If you want to run prediction using multiple thread, call xgb.copy() to make copies
|
||||||
|
of model object and then call predict
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data : DMatrix
|
||||||
|
The dmatrix storing the input.
|
||||||
|
output_margin : bool
|
||||||
|
Whether to output the raw untransformed margin value.
|
||||||
|
ntree_limit : int
|
||||||
|
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
prediction : numpy array
|
||||||
|
"""
|
||||||
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
||||||
class_probs = self.get_booster().predict(test_dmatrix,
|
class_probs = self.get_booster().predict(test_dmatrix,
|
||||||
output_margin=output_margin,
|
output_margin=output_margin,
|
||||||
@ -532,6 +550,25 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
return self._le.inverse_transform(column_indexes)
|
return self._le.inverse_transform(column_indexes)
|
||||||
|
|
||||||
def predict_proba(self, data, output_margin=False, ntree_limit=0):
|
def predict_proba(self, data, output_margin=False, ntree_limit=0):
|
||||||
|
"""
|
||||||
|
Predict the probability of each `data` example being of a given class.
|
||||||
|
NOTE: This function is not thread safe.
|
||||||
|
For each booster object, predict can only be called from one thread.
|
||||||
|
If you want to run prediction using multiple thread, call xgb.copy() to make copies
|
||||||
|
of model object and then call predict
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data : DMatrix
|
||||||
|
The dmatrix storing the input.
|
||||||
|
output_margin : bool
|
||||||
|
Whether to output the raw untransformed margin value.
|
||||||
|
ntree_limit : int
|
||||||
|
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
prediction : numpy array
|
||||||
|
a numpy array with the probability of each data example being of a given class.
|
||||||
|
"""
|
||||||
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
||||||
class_probs = self.get_booster().predict(test_dmatrix,
|
class_probs = self.get_booster().predict(test_dmatrix,
|
||||||
output_margin=output_margin,
|
output_margin=output_margin,
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user