Update R doc by roxygen2. (#5201)
This commit is contained in:
parent
0184f2e9f7
commit
808f61081b
@ -63,5 +63,5 @@ Imports:
|
||||
data.table (>= 1.9.6),
|
||||
magrittr (>= 1.5),
|
||||
stringi (>= 0.5.2)
|
||||
RoxygenNote: 6.1.0
|
||||
RoxygenNote: 7.0.2
|
||||
SystemRequirements: GNU make, C++11
|
||||
|
||||
@ -4,8 +4,12 @@
|
||||
\alias{cb.early.stop}
|
||||
\title{Callback closure to activate the early stopping.}
|
||||
\usage{
|
||||
cb.early.stop(stopping_rounds, maximize = FALSE, metric_name = NULL,
|
||||
verbose = TRUE)
|
||||
cb.early.stop(
|
||||
stopping_rounds,
|
||||
maximize = FALSE,
|
||||
metric_name = NULL,
|
||||
verbose = TRUE
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{stopping_rounds}{The number of rounds with no improvement in
|
||||
|
||||
@ -5,10 +5,20 @@
|
||||
\alias{predict.xgb.Booster.handle}
|
||||
\title{Predict method for eXtreme Gradient Boosting model}
|
||||
\usage{
|
||||
\method{predict}{xgb.Booster}(object, newdata, missing = NA,
|
||||
outputmargin = FALSE, ntreelimit = NULL, predleaf = FALSE,
|
||||
predcontrib = FALSE, approxcontrib = FALSE, predinteraction = FALSE,
|
||||
reshape = FALSE, ...)
|
||||
\method{predict}{xgb.Booster}(
|
||||
object,
|
||||
newdata,
|
||||
missing = NA,
|
||||
outputmargin = FALSE,
|
||||
ntreelimit = NULL,
|
||||
predleaf = FALSE,
|
||||
predcontrib = FALSE,
|
||||
approxcontrib = FALSE,
|
||||
predinteraction = FALSE,
|
||||
reshape = FALSE,
|
||||
training = FALSE,
|
||||
...
|
||||
)
|
||||
|
||||
\method{predict}{xgb.Booster.handle}(object, ...)
|
||||
}
|
||||
|
||||
@ -87,6 +87,6 @@ accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) /
|
||||
|
||||
# Here the accuracy was already good and is now perfect.
|
||||
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now",
|
||||
accuracy.after, "!\\n"))
|
||||
accuracy.after, "!\n"))
|
||||
|
||||
}
|
||||
|
||||
@ -4,11 +4,28 @@
|
||||
\alias{xgb.cv}
|
||||
\title{Cross Validation}
|
||||
\usage{
|
||||
xgb.cv(params = list(), data, nrounds, nfold, label = NULL, missing = NA,
|
||||
prediction = FALSE, showsd = TRUE, metrics = list(), obj = NULL,
|
||||
feval = NULL, stratified = TRUE, folds = NULL, verbose = TRUE,
|
||||
print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL,
|
||||
callbacks = list(), ...)
|
||||
xgb.cv(
|
||||
params = list(),
|
||||
data,
|
||||
nrounds,
|
||||
nfold,
|
||||
label = NULL,
|
||||
missing = NA,
|
||||
prediction = FALSE,
|
||||
showsd = TRUE,
|
||||
metrics = list(),
|
||||
obj = NULL,
|
||||
feval = NULL,
|
||||
stratified = TRUE,
|
||||
folds = NULL,
|
||||
train_folds = NULL,
|
||||
verbose = TRUE,
|
||||
print_every_n = 1L,
|
||||
early_stopping_rounds = NULL,
|
||||
maximize = NULL,
|
||||
callbacks = list(),
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{params}{the list of parameters. Commonly used ones are:
|
||||
@ -69,6 +86,9 @@ by the values of outcome labels.}
|
||||
(each element must be a vector of test fold's indices). When folds are supplied,
|
||||
the \code{nfold} and \code{stratified} parameters are ignored.}
|
||||
|
||||
\item{train_folds}{\code{list} list specifying which indicies to use for training. If \code{NULL}
|
||||
(the default) all indices not specified in \code{folds} will be used for training.}
|
||||
|
||||
\item{verbose}{\code{boolean}, print the statistics during the process}
|
||||
|
||||
\item{print_every_n}{Print each n-th iteration evaluation messages when \code{verbose>0}.
|
||||
|
||||
@ -4,8 +4,14 @@
|
||||
\alias{xgb.dump}
|
||||
\title{Dump an xgboost model in text format.}
|
||||
\usage{
|
||||
xgb.dump(model, fname = NULL, fmap = "", with_stats = FALSE,
|
||||
dump_format = c("text", "json"), ...)
|
||||
xgb.dump(
|
||||
model,
|
||||
fname = NULL,
|
||||
fmap = "",
|
||||
with_stats = FALSE,
|
||||
dump_format = c("text", "json"),
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{model}{the model object.}
|
||||
|
||||
@ -4,8 +4,14 @@
|
||||
\alias{xgb.importance}
|
||||
\title{Importance of features in a model.}
|
||||
\usage{
|
||||
xgb.importance(feature_names = NULL, model = NULL, trees = NULL,
|
||||
data = NULL, label = NULL, target = NULL)
|
||||
xgb.importance(
|
||||
feature_names = NULL,
|
||||
model = NULL,
|
||||
trees = NULL,
|
||||
data = NULL,
|
||||
label = NULL,
|
||||
target = NULL
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{character vector of feature names. If the model already
|
||||
|
||||
@ -4,8 +4,14 @@
|
||||
\alias{xgb.model.dt.tree}
|
||||
\title{Parse a boosted tree model text dump}
|
||||
\usage{
|
||||
xgb.model.dt.tree(feature_names = NULL, model = NULL, text = NULL,
|
||||
trees = NULL, use_int_id = FALSE, ...)
|
||||
xgb.model.dt.tree(
|
||||
feature_names = NULL,
|
||||
model = NULL,
|
||||
text = NULL,
|
||||
trees = NULL,
|
||||
use_int_id = FALSE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{character vector of feature names. If the model already
|
||||
|
||||
@ -5,11 +5,17 @@
|
||||
\alias{xgb.plot.deepness}
|
||||
\title{Plot model trees deepness}
|
||||
\usage{
|
||||
xgb.ggplot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
|
||||
"med.weight"))
|
||||
xgb.ggplot.deepness(
|
||||
model = NULL,
|
||||
which = c("2x1", "max.depth", "med.depth", "med.weight")
|
||||
)
|
||||
|
||||
xgb.plot.deepness(model = NULL, which = c("2x1", "max.depth", "med.depth",
|
||||
"med.weight"), plot = TRUE, ...)
|
||||
xgb.plot.deepness(
|
||||
model = NULL,
|
||||
which = c("2x1", "max.depth", "med.depth", "med.weight"),
|
||||
plot = TRUE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{model}{either an \code{xgb.Booster} model generated by the \code{xgb.train} function
|
||||
|
||||
@ -5,12 +5,25 @@
|
||||
\alias{xgb.plot.importance}
|
||||
\title{Plot feature importance as a bar graph}
|
||||
\usage{
|
||||
xgb.ggplot.importance(importance_matrix = NULL, top_n = NULL,
|
||||
measure = NULL, rel_to_first = FALSE, n_clusters = c(1:10), ...)
|
||||
xgb.ggplot.importance(
|
||||
importance_matrix = NULL,
|
||||
top_n = NULL,
|
||||
measure = NULL,
|
||||
rel_to_first = FALSE,
|
||||
n_clusters = c(1:10),
|
||||
...
|
||||
)
|
||||
|
||||
xgb.plot.importance(importance_matrix = NULL, top_n = NULL,
|
||||
measure = NULL, rel_to_first = FALSE, left_margin = 10, cex = NULL,
|
||||
plot = TRUE, ...)
|
||||
xgb.plot.importance(
|
||||
importance_matrix = NULL,
|
||||
top_n = NULL,
|
||||
measure = NULL,
|
||||
rel_to_first = FALSE,
|
||||
left_margin = 10,
|
||||
cex = NULL,
|
||||
plot = TRUE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{importance_matrix}{a \code{data.table} returned by \code{\link{xgb.importance}}.}
|
||||
|
||||
@ -4,8 +4,15 @@
|
||||
\alias{xgb.plot.multi.trees}
|
||||
\title{Project all trees on one tree and plot it}
|
||||
\usage{
|
||||
xgb.plot.multi.trees(model, feature_names = NULL, features_keep = 5,
|
||||
plot_width = NULL, plot_height = NULL, render = TRUE, ...)
|
||||
xgb.plot.multi.trees(
|
||||
model,
|
||||
feature_names = NULL,
|
||||
features_keep = 5,
|
||||
plot_width = NULL,
|
||||
plot_height = NULL,
|
||||
render = TRUE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{model}{produced by the \code{xgb.train} function.}
|
||||
|
||||
@ -4,13 +4,33 @@
|
||||
\alias{xgb.plot.shap}
|
||||
\title{SHAP contribution dependency plots}
|
||||
\usage{
|
||||
xgb.plot.shap(data, shap_contrib = NULL, features = NULL, top_n = 1,
|
||||
model = NULL, trees = NULL, target_class = NULL,
|
||||
approxcontrib = FALSE, subsample = NULL, n_col = 1, col = rgb(0, 0, 1,
|
||||
0.2), pch = ".", discrete_n_uniq = 5, discrete_jitter = 0.01,
|
||||
ylab = "SHAP", plot_NA = TRUE, col_NA = rgb(0.7, 0, 1, 0.6),
|
||||
pch_NA = ".", pos_NA = 1.07, plot_loess = TRUE, col_loess = 2,
|
||||
span_loess = 0.5, which = c("1d", "2d"), plot = TRUE, ...)
|
||||
xgb.plot.shap(
|
||||
data,
|
||||
shap_contrib = NULL,
|
||||
features = NULL,
|
||||
top_n = 1,
|
||||
model = NULL,
|
||||
trees = NULL,
|
||||
target_class = NULL,
|
||||
approxcontrib = FALSE,
|
||||
subsample = NULL,
|
||||
n_col = 1,
|
||||
col = rgb(0, 0, 1, 0.2),
|
||||
pch = ".",
|
||||
discrete_n_uniq = 5,
|
||||
discrete_jitter = 0.01,
|
||||
ylab = "SHAP",
|
||||
plot_NA = TRUE,
|
||||
col_NA = rgb(0.7, 0, 1, 0.6),
|
||||
pch_NA = ".",
|
||||
pos_NA = 1.07,
|
||||
plot_loess = TRUE,
|
||||
col_loess = 2,
|
||||
span_loess = 0.5,
|
||||
which = c("1d", "2d"),
|
||||
plot = TRUE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data as a \code{matrix} or \code{dgCMatrix}.}
|
||||
|
||||
@ -4,9 +4,16 @@
|
||||
\alias{xgb.plot.tree}
|
||||
\title{Plot a boosted tree model}
|
||||
\usage{
|
||||
xgb.plot.tree(feature_names = NULL, model = NULL, trees = NULL,
|
||||
plot_width = NULL, plot_height = NULL, render = TRUE,
|
||||
show_node_id = FALSE, ...)
|
||||
xgb.plot.tree(
|
||||
feature_names = NULL,
|
||||
model = NULL,
|
||||
trees = NULL,
|
||||
plot_width = NULL,
|
||||
plot_height = NULL,
|
||||
render = TRUE,
|
||||
show_node_id = FALSE,
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{feature_names}{names of each feature as a \code{character} vector.}
|
||||
|
||||
@ -5,15 +5,41 @@
|
||||
\alias{xgboost}
|
||||
\title{eXtreme Gradient Boosting Training}
|
||||
\usage{
|
||||
xgb.train(params = list(), data, nrounds, watchlist = list(), obj = NULL,
|
||||
feval = NULL, verbose = 1, print_every_n = 1L,
|
||||
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
|
||||
xgb.train(
|
||||
params = list(),
|
||||
data,
|
||||
nrounds,
|
||||
watchlist = list(),
|
||||
obj = NULL,
|
||||
feval = NULL,
|
||||
verbose = 1,
|
||||
print_every_n = 1L,
|
||||
early_stopping_rounds = NULL,
|
||||
maximize = NULL,
|
||||
save_period = NULL,
|
||||
save_name = "xgboost.model",
|
||||
xgb_model = NULL,
|
||||
callbacks = list(),
|
||||
...
|
||||
)
|
||||
|
||||
xgboost(data = NULL, label = NULL, missing = NA, weight = NULL,
|
||||
params = list(), nrounds, verbose = 1, print_every_n = 1L,
|
||||
early_stopping_rounds = NULL, maximize = NULL, save_period = NULL,
|
||||
save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...)
|
||||
xgboost(
|
||||
data = NULL,
|
||||
label = NULL,
|
||||
missing = NA,
|
||||
weight = NULL,
|
||||
params = list(),
|
||||
nrounds,
|
||||
verbose = 1,
|
||||
print_every_n = 1L,
|
||||
early_stopping_rounds = NULL,
|
||||
maximize = NULL,
|
||||
save_period = NULL,
|
||||
save_name = "xgboost.model",
|
||||
xgb_model = NULL,
|
||||
callbacks = list(),
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{params}{the list of parameters.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user