fix iris to Rd files

This commit is contained in:
hetong 2014-09-05 19:47:58 -07:00
parent d776e0fdf5
commit 801a17fa02
15 changed files with 435 additions and 12 deletions

View File

@ -21,7 +21,7 @@ Get information of an xgb.DMatrix object
} }
\examples{ \examples{
data(iris) data(iris)
iris[,5] <- as.numeric(iris[,5]) iris[,5] <- as.numeric(iris[,5]=='setosa')
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
labels <- getinfo(dtrain, "label") labels <- getinfo(dtrain, "label")
} }

View File

@ -18,15 +18,16 @@ value of sum of functions, when outputmargin=TRUE, the prediction is
untransformed margin value. In logistic regression, outputmargin=T will untransformed margin value. In logistic regression, outputmargin=T will
output value before logistic transformation.} output value before logistic transformation.}
\item{ntreelimit}{limit number of trees used in prediction, this parameter is only valid for gbtree, but not for gblinear. \item{ntreelimit}{limit number of trees used in prediction, this parameter is
set it to be value bigger than 0. It will use all trees by default.} only valid for gbtree, but not for gblinear. set it to be value bigger
than 0. It will use all trees by default.}
} }
\description{ \description{
Predicted values based on xgboost model object. Predicted values based on xgboost model object.
} }
\examples{ \examples{
data(iris) data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
pred <- predict(bst, as.matrix(iris[,1:4])) pred <- predict(bst, as.matrix(iris[,1:4]))
} }

View File

@ -23,7 +23,7 @@ orginal xgb.DMatrix object
} }
\examples{ \examples{
data(iris) data(iris)
iris[,5] <- as.numeric(iris[,5]) iris[,5] <- as.numeric(iris[,5]=='setosa')
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
dsub <- slice(dtrain, 1:3) dsub <- slice(dtrain, 1:3)
} }

View File

@ -20,7 +20,7 @@ Contruct xgb.DMatrix object from dense matrix, sparse matrix or local file.
} }
\examples{ \examples{
data(iris) data(iris)
iris[,5] <- as.numeric(iris[,5]) iris[,5] <- as.numeric(iris[,5]=='setosa')
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
dtrain <- xgb.DMatrix('iris.xgb.DMatrix') dtrain <- xgb.DMatrix('iris.xgb.DMatrix')

View File

@ -15,7 +15,7 @@ Save xgb.DMatrix object to binary file
} }
\examples{ \examples{
data(iris) data(iris)
iris[,5] <- as.numeric(iris[,5]) iris[,5] <- as.numeric(iris[,5]=='setosa')
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix') xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
dtrain <- xgb.DMatrix('iris.xgb.DMatrix') dtrain <- xgb.DMatrix('iris.xgb.DMatrix')

View File

@ -21,7 +21,7 @@ Save a xgboost model to text file. Could be parsed later.
} }
\examples{ \examples{
data(iris) data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
xgb.dump(bst, 'iris.xgb.model.dump') xgb.dump(bst, 'iris.xgb.model.dump')
} }

View File

@ -13,7 +13,7 @@ Load xgboost model from the binary model file
} }
\examples{ \examples{
data(iris) data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
xgb.save(bst, 'iris.xgb.model') xgb.save(bst, 'iris.xgb.model')
bst <- xgb.load('iris.xgb.model') bst <- xgb.load('iris.xgb.model')
pred <- predict(bst, as.matrix(iris[,1:4])) pred <- predict(bst, as.matrix(iris[,1:4]))

View File

@ -15,7 +15,7 @@ Save xgboost model from xgboost or xgb.train
} }
\examples{ \examples{
data(iris) data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
xgb.save(bst, 'iris.xgb.model') xgb.save(bst, 'iris.xgb.model')
bst <- xgb.load('iris.xgb.model') bst <- xgb.load('iris.xgb.model')
pred <- predict(bst, as.matrix(iris[,1:4])) pred <- predict(bst, as.matrix(iris[,1:4]))

View File

@ -56,7 +56,7 @@ therefore it is more flexible than \code{\link{xgboost}}.
} }
\examples{ \examples{
data(iris) data(iris)
iris[,5] <- as.numeric(iris[,5]) iris[,5] <- as.numeric(iris[,5]=='setosa')
dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5]) dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
dtest <- dtrain dtest <- dtrain
watchlist <- list(eval = dtest, train = dtrain) watchlist <- list(eval = dtest, train = dtrain)

View File

@ -46,7 +46,7 @@ Number of threads can also be manually specified via "nthread" parameter
} }
\examples{ \examples{
data(iris) data(iris)
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2) bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
pred <- predict(bst, as.matrix(iris[,1:4])) pred <- predict(bst, as.matrix(iris[,1:4]))
} }

View File

@ -0,0 +1,28 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{friedman2001greedy}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Example with iris}{1}{section.2}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Advanced Examples}{2}{section.3}}
\bibstyle{jss}
\citation{*}
\bibdata{xgboost}
\bibcite{friedman2000additive}{{1}{2000}{{Friedman \emph {et~al.}}}{{Friedman, Hastie, Tibshirani \emph {et~al.}}}}
\bibcite{friedman2001greedy}{{2}{2001}{{Friedman}}{{}}}
\@writefile{toc}{\contentsline {section}{\numberline {4}The Higgs Boson competition}{3}{section.4}}

View File

@ -0,0 +1,24 @@
\begin{thebibliography}{2}
\newcommand{\enquote}[1]{``#1''}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\providecommand{\urlprefix}{URL }
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else
\providecommand{\doi}{doi:\discretionary{}{}{}\begingroup
\urlstyle{rm}\Url}\fi
\providecommand{\eprint}[2][]{\url{#2}}
\bibitem[{Friedman \emph{et~al.}(2000)Friedman, Hastie, Tibshirani
\emph{et~al.}}]{friedman2000additive}
Friedman J, Hastie T, Tibshirani R, \emph{et~al.} (2000).
\newblock \enquote{Additive logistic regression: a statistical view of boosting
(with discussion and a rejoinder by the authors).}
\newblock \emph{The annals of statistics}, \textbf{28}(2), 337--407.
\bibitem[{Friedman(2001)}]{friedman2001greedy}
Friedman JH (2001).
\newblock \enquote{Greedy function approximation: a gradient boosting machine.}
\newblock \emph{Annals of Statistics}, pp. 1189--1232.
\end{thebibliography}

View File

@ -0,0 +1,47 @@
This is BibTeX, Version 0.99d (TeX Live 2013/Debian)
Capacity: max_strings=35307, hash_size=35307, hash_prime=30011
The top-level auxiliary file: xgboost.aux
The style file: jss.bst
Database file #1: xgboost.bib
Reallocated wiz_functions (elt_size=4) to 6000 items from 3000.
You've used 2 entries,
3140 wiz_defined-function locations,
641 strings with 5430 characters,
and the built_in function-call counts, 1920 in all, are:
= -- 162
> -- 44
< -- 2
+ -- 17
- -- 15
* -- 149
:= -- 256
add.period$ -- 8
call.type$ -- 2
change.case$ -- 12
chr.to.int$ -- 2
cite$ -- 2
duplicate$ -- 171
empty$ -- 175
format.name$ -- 19
if$ -- 395
int.to.chr$ -- 1
int.to.str$ -- 1
missing$ -- 24
newline$ -- 21
num.names$ -- 8
pop$ -- 51
preamble$ -- 1
purify$ -- 12
quote$ -- 0
skip$ -- 53
stack$ -- 0
substring$ -- 181
swap$ -- 65
text.length$ -- 1
text.prefix$ -- 0
top$ -- 0
type$ -- 18
warning$ -- 0
while$ -- 16
width$ -- 0
write$ -- 36

View File

@ -0,0 +1,4 @@
\BOOKMARK [1][-]{section.1}{Introduction}{}% 1
\BOOKMARK [1][-]{section.2}{Example with iris}{}% 2
\BOOKMARK [1][-]{section.3}{Advanced Examples}{}% 3
\BOOKMARK [1][-]{section.4}{The Higgs Boson competition}{}% 4

View File

@ -0,0 +1,319 @@
\documentclass{article}\usepackage[]{graphicx}\usepackage[]{color}
%% maxwidth is the original width if it is less than linewidth
%% otherwise use linewidth (to make sure the graphics do not exceed the margin)
\makeatletter
\def\maxwidth{ %
\ifdim\Gin@nat@width>\linewidth
\linewidth
\else
\Gin@nat@width
\fi
}
\makeatother
\definecolor{fgcolor}{rgb}{0.345, 0.345, 0.345}
\newcommand{\hlnum}[1]{\textcolor[rgb]{0.686,0.059,0.569}{#1}}%
\newcommand{\hlstr}[1]{\textcolor[rgb]{0.192,0.494,0.8}{#1}}%
\newcommand{\hlcom}[1]{\textcolor[rgb]{0.678,0.584,0.686}{\textit{#1}}}%
\newcommand{\hlopt}[1]{\textcolor[rgb]{0,0,0}{#1}}%
\newcommand{\hlstd}[1]{\textcolor[rgb]{0.345,0.345,0.345}{#1}}%
\newcommand{\hlkwa}[1]{\textcolor[rgb]{0.161,0.373,0.58}{\textbf{#1}}}%
\newcommand{\hlkwb}[1]{\textcolor[rgb]{0.69,0.353,0.396}{#1}}%
\newcommand{\hlkwc}[1]{\textcolor[rgb]{0.333,0.667,0.333}{#1}}%
\newcommand{\hlkwd}[1]{\textcolor[rgb]{0.737,0.353,0.396}{\textbf{#1}}}%
\usepackage{framed}
\makeatletter
\newenvironment{kframe}{%
\def\at@end@of@kframe{}%
\ifinner\ifhmode%
\def\at@end@of@kframe{\end{minipage}}%
\begin{minipage}{\columnwidth}%
\fi\fi%
\def\FrameCommand##1{\hskip\@totalleftmargin \hskip-\fboxsep
\colorbox{shadecolor}{##1}\hskip-\fboxsep
% There is no \\@totalrightmargin, so:
\hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}%
\MakeFramed {\advance\hsize-\width
\@totalleftmargin\z@ \linewidth\hsize
\@setminipage}}%
{\par\unskip\endMakeFramed%
\at@end@of@kframe}
\makeatother
\definecolor{shadecolor}{rgb}{.97, .97, .97}
\definecolor{messagecolor}{rgb}{0, 0, 0}
\definecolor{warningcolor}{rgb}{1, 0, 1}
\definecolor{errorcolor}{rgb}{1, 0, 0}
\newenvironment{knitrout}{}{} % an empty environment to be redefined in TeX
\usepackage{alltt}
\RequirePackage{url}
\usepackage{hyperref}
\RequirePackage{amsmath}
\RequirePackage{natbib}
\RequirePackage[a4paper,lmargin={1.25in},rmargin={1.25in},tmargin={1in},bmargin={1in}]{geometry}
\makeatletter
% \VignetteIndexEntry{xgboost: eXtreme Gradient Boosting}
%\VignetteKeywords{xgboost, gbm, gradient boosting machines}
%\VignettePackage{xgboost}
% \VignetteEngine{knitr::knitr}
\makeatother
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
\begin{document}
%\SweaveOpts{concordance=TRUE}
%
%
\begin{center}
\vspace*{6\baselineskip}
\rule{\textwidth}{1.6pt}\vspace*{-\baselineskip}\vspace*{2pt}
\rule{\textwidth}{0.4pt}\\[2\baselineskip]
{\LARGE \textbf{xgboost: eXtreme Gradient Boosting}}\\[1.2\baselineskip]
\rule{\textwidth}{0.4pt}\vspace*{-\baselineskip}\vspace{3.2pt}
\rule{\textwidth}{1.6pt}\\[2\baselineskip]
{\Large Tianqi Chen, Tong He}\\[\baselineskip]
{\large Package Version: 0.3-0}\\[\baselineskip]
{\large \today}\par
\vfill
\end{center}
\thispagestyle{empty}
\clearpage
\setcounter{page}{1}
\section{Introduction}
This is an introductory document of using the \verb@xgboost@ package in R.
\verb@xgboost@ is short for eXtreme Gradient Boosting package. It is an efficient
and scalable implementation of gradient boosting framework by \citep{friedman2001greedy}.
The package includes efficient linear model solver and tree learning algorithm.
It supports various objective functions, including regression, classification
and ranking. The package is made to be extendible, so that users are also allowed to define their own objectives easily. It has several features:
\begin{enumerate}
\item{Speed: }{\verb@xgboost@ can automatically do parallel computation on
Windows and Linux, with openmp. It is generally over 10 times faster than
\verb@gbm@.}
\item{Input Type: }{\verb@xgboost@ takes several types of input data:}
\begin{itemize}
\item{Dense Matrix: }{R's dense matrix, i.e. \verb@matrix@}
\item{Sparse Matrix: }{R's sparse matrix \verb@Matrix::dgCMatrix@}
\item{Data File: }{Local data files}
\item{xgb.DMatrix: }{\verb@xgboost@'s own class. Recommended.}
\end{itemize}
\item{Sparsity: }{\verb@xgboost@ accepts sparse input for both tree booster
and linear booster, and is optimized for sparse input.}
\item{Customization: }{\verb@xgboost@ supports customized objective function
and evaluation function}
\item{Performance: }{\verb@xgboost@ has better performance on several different
datasets.}
\end{enumerate}
\section{Example with iris}
In this section, we will illustrate some common usage of \verb@xgboost@.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlkwd{library}\hlstd{(xgboost)}
\hlkwd{data}\hlstd{(iris)}
\hlstd{bst} \hlkwb{<-} \hlkwd{xgboost}\hlstd{(}\hlkwd{as.matrix}\hlstd{(iris[,}\hlnum{1}\hlopt{:}\hlnum{4}\hlstd{]),}\hlkwd{as.numeric}\hlstd{(iris[,}\hlnum{5}\hlstd{]}\hlopt{==}\hlstr{'setosa'}\hlstd{),}
\hlkwc{nrounds} \hlstd{=} \hlnum{5}\hlstd{)}
\end{alltt}
\begin{verbatim}
## [0] train-rmse:0.351971
## [1] train-rmse:0.247769
## [2] train-rmse:0.174418
## [3] train-rmse:0.122783
## [4] train-rmse:0.086435
\end{verbatim}
\begin{alltt}
\hlkwd{xgb.save}\hlstd{(bst,} \hlstr{'model.save'}\hlstd{)}
\end{alltt}
\begin{verbatim}
## [1] TRUE
\end{verbatim}
\begin{alltt}
\hlstd{bst} \hlkwb{=} \hlkwd{xgb.load}\hlstd{(}\hlstr{'model.save'}\hlstd{)}
\hlstd{pred} \hlkwb{<-} \hlkwd{predict}\hlstd{(bst,} \hlkwd{as.matrix}\hlstd{(iris[,}\hlnum{1}\hlopt{:}\hlnum{4}\hlstd{]))}
\end{alltt}
\end{kframe}
\end{knitrout}
\verb@xgboost@ is the main function to train a \verb@Booster@, i.e. a model.
\verb@predict@ does prediction on the model.
Here we can save the model to a binary local file, and load it when needed.
We can't inspect the trees inside. However we have another function to save the
model in plain text.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlkwd{xgb.dump}\hlstd{(bst,} \hlstr{'model.dump'}\hlstd{)}
\end{alltt}
\begin{verbatim}
## [1] TRUE
\end{verbatim}
\end{kframe}
\end{knitrout}
The output looks like
\begin{verbatim}
booster[0]:
0:[f2<2.45] yes=1,no=2,missing=1
1:leaf=0.147059
2:[f3<1.65] yes=3,no=4,missing=3
3:leaf=0.464151
4:leaf=0.722449
booster[1]:
0:[f2<2.45] yes=1,no=2,missing=1
1:leaf=0.103806
2:[f2<4.85] yes=3,no=4,missing=3
3:leaf=0.316341
4:leaf=0.510365
\end{verbatim}
It is important to know \verb@xgboost@'s own data type: \verb@xgb.DMatrix@.
It speeds up \verb@xgboost@, and is needed for advanced features such as
training from initial prediction value, weighted training instance.
We can use \verb@xgb.DMatrix@ to construct an \verb@xgb.DMatrix@ object:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{iris.mat} \hlkwb{<-} \hlkwd{as.matrix}\hlstd{(iris[,}\hlnum{1}\hlopt{:}\hlnum{4}\hlstd{])}
\hlstd{iris.label} \hlkwb{<-} \hlkwd{as.numeric}\hlstd{(iris[,}\hlnum{5}\hlstd{]}\hlopt{==}\hlstr{'setosa'}\hlstd{)}
\hlstd{diris} \hlkwb{<-} \hlkwd{xgb.DMatrix}\hlstd{(iris.mat,} \hlkwc{label} \hlstd{= iris.label)}
\hlkwd{class}\hlstd{(diris)}
\end{alltt}
\begin{verbatim}
## [1] "xgb.DMatrix"
\end{verbatim}
\begin{alltt}
\hlkwd{getinfo}\hlstd{(diris,}\hlstr{'label'}\hlstd{)}
\end{alltt}
\begin{verbatim}
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [71] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [106] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [141] 0 0 0 0 0 0 0 0 0 0
\end{verbatim}
\end{kframe}
\end{knitrout}
We can also save the matrix to a binary file. Then load it simply with
\verb@xgb.DMatrix@
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlkwd{xgb.DMatrix.save}\hlstd{(diris,} \hlstr{'iris.xgb.DMatrix'}\hlstd{)}
\end{alltt}
\begin{verbatim}
## 150x4 matrix with 600 entries is saved to iris.xgb.DMatrix
## [1] TRUE
\end{verbatim}
\begin{alltt}
\hlstd{diris} \hlkwb{=} \hlkwd{xgb.DMatrix}\hlstd{(}\hlstr{'iris.xgb.DMatrix'}\hlstd{)}
\end{alltt}
\begin{verbatim}
## 150x4 matrix with 600 entries is loaded from iris.xgb.DMatrix
\end{verbatim}
\end{kframe}
\end{knitrout}
\section{Advanced Examples}
The function \verb@xgboost@ is a simple function with less parameter, in order
to be R-friendly. The core training function is wrapped in \verb@xgb.train@. It is more flexible than \verb@xgboost@, but it requires users to read the document a bit more carefully.
\verb@xgb.train@ only accept a \verb@xgb.DMatrix@ object as its input, while it supports advanced features as custom objective and evaluation functions.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{logregobj} \hlkwb{<-} \hlkwa{function}\hlstd{(}\hlkwc{preds}\hlstd{,} \hlkwc{dtrain}\hlstd{) \{}
\hlstd{labels} \hlkwb{<-} \hlkwd{getinfo}\hlstd{(dtrain,} \hlstr{"label"}\hlstd{)}
\hlstd{preds} \hlkwb{<-} \hlnum{1}\hlopt{/}\hlstd{(}\hlnum{1} \hlopt{+} \hlkwd{exp}\hlstd{(}\hlopt{-}\hlstd{preds))}
\hlstd{grad} \hlkwb{<-} \hlstd{preds} \hlopt{-} \hlstd{labels}
\hlstd{hess} \hlkwb{<-} \hlstd{preds} \hlopt{*} \hlstd{(}\hlnum{1} \hlopt{-} \hlstd{preds)}
\hlkwd{return}\hlstd{(}\hlkwd{list}\hlstd{(}\hlkwc{grad} \hlstd{= grad,} \hlkwc{hess} \hlstd{= hess))}
\hlstd{\}}
\hlstd{evalerror} \hlkwb{<-} \hlkwa{function}\hlstd{(}\hlkwc{preds}\hlstd{,} \hlkwc{dtrain}\hlstd{) \{}
\hlstd{labels} \hlkwb{<-} \hlkwd{getinfo}\hlstd{(dtrain,} \hlstr{"label"}\hlstd{)}
\hlstd{err} \hlkwb{<-} \hlkwd{sqrt}\hlstd{(}\hlkwd{mean}\hlstd{((preds}\hlopt{-}\hlstd{labels)}\hlopt{^}\hlnum{2}\hlstd{))}
\hlkwd{return}\hlstd{(}\hlkwd{list}\hlstd{(}\hlkwc{metric} \hlstd{=} \hlstr{"MSE"}\hlstd{,} \hlkwc{value} \hlstd{= err))}
\hlstd{\}}
\hlstd{dtest} \hlkwb{<-} \hlkwd{slice}\hlstd{(diris,}\hlnum{1}\hlopt{:}\hlnum{100}\hlstd{)}
\hlstd{watchlist} \hlkwb{<-} \hlkwd{list}\hlstd{(}\hlkwc{eval} \hlstd{= dtest,} \hlkwc{train} \hlstd{= diris)}
\hlstd{param} \hlkwb{<-} \hlkwd{list}\hlstd{(}\hlkwc{max_depth} \hlstd{=} \hlnum{2}\hlstd{,} \hlkwc{eta} \hlstd{=} \hlnum{1}\hlstd{,} \hlkwc{silent} \hlstd{=} \hlnum{1}\hlstd{)}
\hlstd{bst} \hlkwb{<-} \hlkwd{xgb.train}\hlstd{(param, diris,} \hlkwc{nround} \hlstd{=} \hlnum{2}\hlstd{, watchlist, logregobj, evalerror)}
\end{alltt}
\begin{verbatim}
## [1] eval-MSE:1.601 train-MSE:1.76
## [2] eval-MSE:2.567 train-MSE:2.745
\end{verbatim}
\end{kframe}
\end{knitrout}
The gradient and second order gradient is required for the output of customized
objective function.
We also have \verb@slice@ for row extraction. It is useful in
cross-validation.
For a walkthrough demo, please see \verb@R-package/inst/examples/demo.R@ for further
details.
\section{The Higgs Boson competition}
We have made a demo for \href{http://www.kaggle.com/c/higgs-boson}{the Higgs
Boson Machine Learning Challenge}.
Here are the instructions to make a submission
\begin{enumerate}
\item Download the \href{http://www.kaggle.com/c/higgs-boson/data}{datasets}
and extract them to \verb@data/@.
\item Run scripts under \verb@xgboost/demo/kaggle-higgs/@:
\href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-train.R}{higgs-train.R}
and \href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-pred.R}{higgs-pred.R}.
The computation will take less than a minute on Intel i7.
\item Go to the \href{http://www.kaggle.com/c/higgs-boson/submissions/attach}{submission page}
and submit your result.
\end{enumerate}
We provide \href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/speedtest.R}{a script}
to compare the time cost on the higgs dataset with \verb@gbm@ and \verb@xgboost@.
The training set contains 350000 records and 30 features.
\verb@xgboost@ can automatically do parallel computation. On a machine with Intel
i7-4700MQ and 24GB memories, we found that \verb@xgboost@ costs about 35 seconds, which is about 20 times faster
than \verb@gbm@. When we limited \verb@xgboost@ to use only one thread, it was
still about two times faster than \verb@gbm@.
Meanwhile, the result from \verb@xgboost@ reaches
\href{http://www.kaggle.com/c/higgs-boson/details/evaluation}{3.60@AMS} with a
single model. This results stands in the
\href{http://www.kaggle.com/c/higgs-boson/leaderboard}{top 30\%} of the
competition.
\bibliographystyle{jss}
\nocite{*} % list uncited references
\bibliography{xgboost}
\end{document}