Added more thorough test for early stopping (+1 squashed commit)
Squashed commits: [4f78cc0] Added test for early stopping (+1 squashed commit)
This commit is contained in:
parent
166e878830
commit
7d297b418f
@ -2,18 +2,31 @@ import xgboost as xgb
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.datasets import load_digits
|
from sklearn.datasets import load_digits
|
||||||
from sklearn.cross_validation import KFold, train_test_split
|
from sklearn.cross_validation import KFold, train_test_split
|
||||||
|
import unittest
|
||||||
|
|
||||||
rng = np.random.RandomState(1994)
|
rng = np.random.RandomState(1994)
|
||||||
|
|
||||||
def test_early_stopping_nonparallel():
|
class TestEarlyStopping(unittest.TestCase):
|
||||||
# digits = load_digits(2)
|
|
||||||
# X = digits['data']
|
def test_early_stopping_nonparallel(self):
|
||||||
# y = digits['target']
|
digits = load_digits(2)
|
||||||
# X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
X = digits['data']
|
||||||
# clf = xgb.XGBClassifier()
|
y = digits['target']
|
||||||
# clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
||||||
# eval_set=[(X_test, y_test)])
|
clf1 = xgb.XGBClassifier()
|
||||||
print("This test will be re-visited later. ")
|
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
|
||||||
|
eval_set=[(X_test, y_test)])
|
||||||
|
clf2 = xgb.XGBClassifier()
|
||||||
|
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
|
||||||
|
eval_set=[(X_test, y_test)])
|
||||||
|
# should be the same
|
||||||
|
assert clf1.best_score == clf2.best_score
|
||||||
|
assert clf1.best_score != 1
|
||||||
|
# check overfit
|
||||||
|
clf3 = xgb.XGBClassifier()
|
||||||
|
clf3.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
||||||
|
eval_set=[(X_test, y_test)])
|
||||||
|
assert clf3.best_score == 1
|
||||||
|
|
||||||
# TODO: parallel test for early stopping
|
# TODO: parallel test for early stopping
|
||||||
# TODO: comment out for now. Will re-visit later
|
# TODO: comment out for now. Will re-visit later
|
||||||
@ -4,12 +4,9 @@ from sklearn.cross_validation import KFold, train_test_split
|
|||||||
from sklearn.metrics import mean_squared_error
|
from sklearn.metrics import mean_squared_error
|
||||||
from sklearn.grid_search import GridSearchCV
|
from sklearn.grid_search import GridSearchCV
|
||||||
from sklearn.datasets import load_iris, load_digits, load_boston
|
from sklearn.datasets import load_iris, load_digits, load_boston
|
||||||
import unittest
|
|
||||||
|
|
||||||
rng = np.random.RandomState(1994)
|
rng = np.random.RandomState(1994)
|
||||||
|
|
||||||
class TestSklearn(unittest.TestCase):
|
|
||||||
|
|
||||||
def test_binary_classification():
|
def test_binary_classification():
|
||||||
digits = load_digits(2)
|
digits = load_digits(2)
|
||||||
y = digits['target']
|
y = digits['target']
|
||||||
@ -51,7 +48,7 @@ class TestSklearn(unittest.TestCase):
|
|||||||
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
||||||
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
||||||
labels = y[test_index]
|
labels = y[test_index]
|
||||||
assert mean_squared_error(preds, labels) < 15
|
assert mean_squared_error(preds, labels) < 25
|
||||||
|
|
||||||
def test_parameter_tuning():
|
def test_parameter_tuning():
|
||||||
boston = load_boston()
|
boston = load_boston()
|
||||||
@ -65,4 +62,3 @@ class TestSklearn(unittest.TestCase):
|
|||||||
assert clf.best_score_ < 0.7
|
assert clf.best_score_ < 0.7
|
||||||
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user