return best_ntree_limit if early stopped
This commit is contained in:
parent
cdbafafc04
commit
790dc877c3
@ -206,7 +206,10 @@ class XGBModel(XGBModelBase):
|
|||||||
Requires at least one item in evals. If there's more than one,
|
Requires at least one item in evals. If there's more than one,
|
||||||
will use the last. Returns the model from the last iteration
|
will use the last. Returns the model from the last iteration
|
||||||
(not the best one). If early stopping occurs, the model will
|
(not the best one). If early stopping occurs, the model will
|
||||||
have two additional fields: bst.best_score and bst.best_iteration.
|
have three additional fields: bst.best_score, bst.best_iteration
|
||||||
|
and bst.best_ntree_limit.
|
||||||
|
(Use bst.best_ntree_limit to get the correct value if num_parallel_tree
|
||||||
|
and/or num_class appears in the parameters)
|
||||||
verbose : bool
|
verbose : bool
|
||||||
If `verbose` and an evaluation set is used, writes the evaluation
|
If `verbose` and an evaluation set is used, writes the evaluation
|
||||||
metric measured on the validation set to stderr.
|
metric measured on the validation set to stderr.
|
||||||
@ -251,6 +254,7 @@ class XGBModel(XGBModelBase):
|
|||||||
if early_stopping_rounds is not None:
|
if early_stopping_rounds is not None:
|
||||||
self.best_score = self._Booster.best_score
|
self.best_score = self._Booster.best_score
|
||||||
self.best_iteration = self._Booster.best_iteration
|
self.best_iteration = self._Booster.best_iteration
|
||||||
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def predict(self, data, output_margin=False, ntree_limit=0):
|
def predict(self, data, output_margin=False, ntree_limit=0):
|
||||||
@ -349,7 +353,10 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
Requires at least one item in evals. If there's more than one,
|
Requires at least one item in evals. If there's more than one,
|
||||||
will use the last. Returns the model from the last iteration
|
will use the last. Returns the model from the last iteration
|
||||||
(not the best one). If early stopping occurs, the model will
|
(not the best one). If early stopping occurs, the model will
|
||||||
have two additional fields: bst.best_score and bst.best_iteration.
|
have three additional fields: bst.best_score, bst.best_iteration
|
||||||
|
and bst.best_ntree_limit.
|
||||||
|
(Use bst.best_ntree_limit to get the correct value if num_parallel_tree
|
||||||
|
and/or num_class appears in the parameters)
|
||||||
verbose : bool
|
verbose : bool
|
||||||
If `verbose` and an evaluation set is used, writes the evaluation
|
If `verbose` and an evaluation set is used, writes the evaluation
|
||||||
metric measured on the validation set to stderr.
|
metric measured on the validation set to stderr.
|
||||||
@ -416,6 +423,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
if early_stopping_rounds is not None:
|
if early_stopping_rounds is not None:
|
||||||
self.best_score = self._Booster.best_score
|
self.best_score = self._Booster.best_score
|
||||||
self.best_iteration = self._Booster.best_iteration
|
self.best_iteration = self._Booster.best_iteration
|
||||||
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
||||||
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user