[sycl] Add depth-wise policy (#10690)
Co-authored-by: Dmitry Razdoburdin <>
This commit is contained in:
parent
b457d0d792
commit
773ded684b
@ -79,6 +79,162 @@ void HistUpdater<GradientSumT>::BuildLocalHistograms(
|
|||||||
builder_monitor_.Stop("BuildLocalHistograms");
|
builder_monitor_.Stop("BuildLocalHistograms");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename GradientSumT>
|
||||||
|
void HistUpdater<GradientSumT>::BuildNodeStats(
|
||||||
|
const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
|
||||||
|
builder_monitor_.Start("BuildNodeStats");
|
||||||
|
for (auto const& entry : qexpand_depth_wise_) {
|
||||||
|
int nid = entry.nid;
|
||||||
|
this->InitNewNode(nid, gmat, gpair, *p_tree);
|
||||||
|
// add constraints
|
||||||
|
if (!(*p_tree)[nid].IsLeftChild() && !(*p_tree)[nid].IsRoot()) {
|
||||||
|
// it's a right child
|
||||||
|
auto parent_id = (*p_tree)[nid].Parent();
|
||||||
|
auto left_sibling_id = (*p_tree)[parent_id].LeftChild();
|
||||||
|
auto parent_split_feature_id = snode_host_[parent_id].best.SplitIndex();
|
||||||
|
tree_evaluator_.AddSplit(
|
||||||
|
parent_id, left_sibling_id, nid, parent_split_feature_id,
|
||||||
|
snode_host_[left_sibling_id].weight, snode_host_[nid].weight);
|
||||||
|
interaction_constraints_.Split(parent_id, parent_split_feature_id,
|
||||||
|
left_sibling_id, nid);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
builder_monitor_.Stop("BuildNodeStats");
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename GradientSumT>
|
||||||
|
void HistUpdater<GradientSumT>::AddSplitsToTree(
|
||||||
|
const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
int *num_leaves,
|
||||||
|
int depth,
|
||||||
|
std::vector<ExpandEntry>* nodes_for_apply_split,
|
||||||
|
std::vector<ExpandEntry>* temp_qexpand_depth) {
|
||||||
|
builder_monitor_.Start("AddSplitsToTree");
|
||||||
|
auto evaluator = tree_evaluator_.GetEvaluator();
|
||||||
|
for (auto const& entry : qexpand_depth_wise_) {
|
||||||
|
const auto lr = param_.learning_rate;
|
||||||
|
int nid = entry.nid;
|
||||||
|
|
||||||
|
if (snode_host_[nid].best.loss_chg < kRtEps ||
|
||||||
|
(param_.max_depth > 0 && depth == param_.max_depth) ||
|
||||||
|
(param_.max_leaves > 0 && (*num_leaves) == param_.max_leaves)) {
|
||||||
|
(*p_tree)[nid].SetLeaf(snode_host_[nid].weight * lr);
|
||||||
|
} else {
|
||||||
|
nodes_for_apply_split->push_back(entry);
|
||||||
|
|
||||||
|
NodeEntry<GradientSumT>& e = snode_host_[nid];
|
||||||
|
bst_float left_leaf_weight =
|
||||||
|
evaluator.CalcWeight(nid, GradStats<GradientSumT>{e.best.left_sum}) * lr;
|
||||||
|
bst_float right_leaf_weight =
|
||||||
|
evaluator.CalcWeight(nid, GradStats<GradientSumT>{e.best.right_sum}) * lr;
|
||||||
|
p_tree->ExpandNode(nid, e.best.SplitIndex(), e.best.split_value,
|
||||||
|
e.best.DefaultLeft(), e.weight, left_leaf_weight,
|
||||||
|
right_leaf_weight, e.best.loss_chg, e.stats.GetHess(),
|
||||||
|
e.best.left_sum.GetHess(), e.best.right_sum.GetHess());
|
||||||
|
|
||||||
|
int left_id = (*p_tree)[nid].LeftChild();
|
||||||
|
int right_id = (*p_tree)[nid].RightChild();
|
||||||
|
temp_qexpand_depth->push_back(ExpandEntry(left_id, p_tree->GetDepth(left_id)));
|
||||||
|
temp_qexpand_depth->push_back(ExpandEntry(right_id, p_tree->GetDepth(right_id)));
|
||||||
|
// - 1 parent + 2 new children
|
||||||
|
(*num_leaves)++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
builder_monitor_.Stop("AddSplitsToTree");
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename GradientSumT>
|
||||||
|
void HistUpdater<GradientSumT>::EvaluateAndApplySplits(
|
||||||
|
const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
int *num_leaves,
|
||||||
|
int depth,
|
||||||
|
std::vector<ExpandEntry> *temp_qexpand_depth) {
|
||||||
|
EvaluateSplits(qexpand_depth_wise_, gmat, *p_tree);
|
||||||
|
|
||||||
|
std::vector<ExpandEntry> nodes_for_apply_split;
|
||||||
|
AddSplitsToTree(gmat, p_tree, num_leaves, depth,
|
||||||
|
&nodes_for_apply_split, temp_qexpand_depth);
|
||||||
|
ApplySplit(nodes_for_apply_split, gmat, p_tree);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Split nodes to 2 sets depending on amount of rows in each node
|
||||||
|
// Histograms for small nodes will be built explicitly
|
||||||
|
// Histograms for big nodes will be built by 'Subtraction Trick'
|
||||||
|
// Exception: in distributed setting, we always build the histogram for the left child node
|
||||||
|
// and use 'Subtraction Trick' to built the histogram for the right child node.
|
||||||
|
// This ensures that the workers operate on the same set of tree nodes.
|
||||||
|
template <typename GradientSumT>
|
||||||
|
void HistUpdater<GradientSumT>::SplitSiblings(
|
||||||
|
const std::vector<ExpandEntry> &nodes,
|
||||||
|
std::vector<ExpandEntry> *small_siblings,
|
||||||
|
std::vector<ExpandEntry> *big_siblings,
|
||||||
|
RegTree *p_tree) {
|
||||||
|
builder_monitor_.Start("SplitSiblings");
|
||||||
|
for (auto const& entry : nodes) {
|
||||||
|
int nid = entry.nid;
|
||||||
|
RegTree::Node &node = (*p_tree)[nid];
|
||||||
|
if (node.IsRoot()) {
|
||||||
|
small_siblings->push_back(entry);
|
||||||
|
} else {
|
||||||
|
const int32_t left_id = (*p_tree)[node.Parent()].LeftChild();
|
||||||
|
const int32_t right_id = (*p_tree)[node.Parent()].RightChild();
|
||||||
|
|
||||||
|
if (nid == left_id && row_set_collection_[left_id ].Size() <
|
||||||
|
row_set_collection_[right_id].Size()) {
|
||||||
|
small_siblings->push_back(entry);
|
||||||
|
} else if (nid == right_id && row_set_collection_[right_id].Size() <=
|
||||||
|
row_set_collection_[left_id ].Size()) {
|
||||||
|
small_siblings->push_back(entry);
|
||||||
|
} else {
|
||||||
|
big_siblings->push_back(entry);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
builder_monitor_.Stop("SplitSiblings");
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename GradientSumT>
|
||||||
|
void HistUpdater<GradientSumT>::ExpandWithDepthWise(
|
||||||
|
const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
|
||||||
|
int num_leaves = 0;
|
||||||
|
|
||||||
|
// in depth_wise growing, we feed loss_chg with 0.0 since it is not used anyway
|
||||||
|
qexpand_depth_wise_.emplace_back(ExpandEntry::kRootNid,
|
||||||
|
p_tree->GetDepth(ExpandEntry::kRootNid));
|
||||||
|
++num_leaves;
|
||||||
|
for (int depth = 0; depth < param_.max_depth + 1; depth++) {
|
||||||
|
std::vector<int> sync_ids;
|
||||||
|
std::vector<ExpandEntry> temp_qexpand_depth;
|
||||||
|
SplitSiblings(qexpand_depth_wise_, &nodes_for_explicit_hist_build_,
|
||||||
|
&nodes_for_subtraction_trick_, p_tree);
|
||||||
|
hist_rows_adder_->AddHistRows(this, &sync_ids, p_tree);
|
||||||
|
BuildLocalHistograms(gmat, p_tree, gpair);
|
||||||
|
hist_synchronizer_->SyncHistograms(this, sync_ids, p_tree);
|
||||||
|
BuildNodeStats(gmat, p_tree, gpair);
|
||||||
|
|
||||||
|
EvaluateAndApplySplits(gmat, p_tree, &num_leaves, depth,
|
||||||
|
&temp_qexpand_depth);
|
||||||
|
|
||||||
|
// clean up
|
||||||
|
qexpand_depth_wise_.clear();
|
||||||
|
nodes_for_subtraction_trick_.clear();
|
||||||
|
nodes_for_explicit_hist_build_.clear();
|
||||||
|
if (temp_qexpand_depth.empty()) {
|
||||||
|
break;
|
||||||
|
} else {
|
||||||
|
qexpand_depth_wise_ = temp_qexpand_depth;
|
||||||
|
temp_qexpand_depth.clear();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template<typename GradientSumT>
|
template<typename GradientSumT>
|
||||||
void HistUpdater<GradientSumT>::ExpandWithLossGuide(
|
void HistUpdater<GradientSumT>::ExpandWithLossGuide(
|
||||||
const common::GHistIndexMatrix& gmat,
|
const common::GHistIndexMatrix& gmat,
|
||||||
@ -326,7 +482,7 @@ void HistUpdater<GradientSumT>::InitData(
|
|||||||
if (param_.grow_policy == xgboost::tree::TrainParam::kLossGuide) {
|
if (param_.grow_policy == xgboost::tree::TrainParam::kLossGuide) {
|
||||||
qexpand_loss_guided_.reset(new ExpandQueue(LossGuide));
|
qexpand_loss_guided_.reset(new ExpandQueue(LossGuide));
|
||||||
} else {
|
} else {
|
||||||
LOG(WARNING) << "Depth-wise building is not yet implemented";
|
qexpand_depth_wise_.clear();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
builder_monitor_.Stop("InitData");
|
builder_monitor_.Stop("InitData");
|
||||||
|
|||||||
@ -129,6 +129,36 @@ class HistUpdater {
|
|||||||
const USMVector<GradientPair, MemoryType::on_device> &gpair,
|
const USMVector<GradientPair, MemoryType::on_device> &gpair,
|
||||||
const RegTree& tree);
|
const RegTree& tree);
|
||||||
|
|
||||||
|
// Split nodes to 2 sets depending on amount of rows in each node
|
||||||
|
// Histograms for small nodes will be built explicitly
|
||||||
|
// Histograms for big nodes will be built by 'Subtraction Trick'
|
||||||
|
void SplitSiblings(const std::vector<ExpandEntry>& nodes,
|
||||||
|
std::vector<ExpandEntry>* small_siblings,
|
||||||
|
std::vector<ExpandEntry>* big_siblings,
|
||||||
|
RegTree *p_tree);
|
||||||
|
|
||||||
|
void BuildNodeStats(const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
const USMVector<GradientPair, MemoryType::on_device> &gpair);
|
||||||
|
|
||||||
|
void EvaluateAndApplySplits(const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
int *num_leaves,
|
||||||
|
int depth,
|
||||||
|
std::vector<ExpandEntry> *temp_qexpand_depth);
|
||||||
|
|
||||||
|
void AddSplitsToTree(
|
||||||
|
const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
int *num_leaves,
|
||||||
|
int depth,
|
||||||
|
std::vector<ExpandEntry>* nodes_for_apply_split,
|
||||||
|
std::vector<ExpandEntry>* temp_qexpand_depth);
|
||||||
|
|
||||||
|
void ExpandWithDepthWise(const common::GHistIndexMatrix &gmat,
|
||||||
|
RegTree *p_tree,
|
||||||
|
const USMVector<GradientPair, MemoryType::on_device> &gpair);
|
||||||
|
|
||||||
void BuildLocalHistograms(const common::GHistIndexMatrix &gmat,
|
void BuildLocalHistograms(const common::GHistIndexMatrix &gmat,
|
||||||
RegTree *p_tree,
|
RegTree *p_tree,
|
||||||
const USMVector<GradientPair, MemoryType::on_device> &gpair);
|
const USMVector<GradientPair, MemoryType::on_device> &gpair);
|
||||||
@ -180,6 +210,7 @@ class HistUpdater {
|
|||||||
std::function<bool(ExpandEntry, ExpandEntry)>>;
|
std::function<bool(ExpandEntry, ExpandEntry)>>;
|
||||||
|
|
||||||
std::unique_ptr<ExpandQueue> qexpand_loss_guided_;
|
std::unique_ptr<ExpandQueue> qexpand_loss_guided_;
|
||||||
|
std::vector<ExpandEntry> qexpand_depth_wise_;
|
||||||
|
|
||||||
enum DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
|
enum DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
|
||||||
DataLayout data_layout_;
|
DataLayout data_layout_;
|
||||||
|
|||||||
@ -75,6 +75,13 @@ class TestHistUpdater : public HistUpdater<GradientSumT> {
|
|||||||
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
|
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
|
||||||
HistUpdater<GradientSumT>::ExpandWithLossGuide(gmat, p_tree, gpair);
|
HistUpdater<GradientSumT>::ExpandWithLossGuide(gmat, p_tree, gpair);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto TestExpandWithDepthWise(const common::GHistIndexMatrix& gmat,
|
||||||
|
DMatrix *p_fmat,
|
||||||
|
RegTree* p_tree,
|
||||||
|
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
|
||||||
|
HistUpdater<GradientSumT>::ExpandWithDepthWise(gmat, p_tree, gpair);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
void GenerateRandomGPairs(::sycl::queue* qu, GradientPair* gpair_ptr, size_t num_rows, bool has_neg_hess) {
|
void GenerateRandomGPairs(::sycl::queue* qu, GradientPair* gpair_ptr, size_t num_rows, bool has_neg_hess) {
|
||||||
@ -544,6 +551,55 @@ void TestHistUpdaterExpandWithLossGuide(const xgboost::tree::TrainParam& param)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <typename GradientSumT>
|
||||||
|
void TestHistUpdaterExpandWithDepthWise(const xgboost::tree::TrainParam& param) {
|
||||||
|
const size_t num_rows = 3;
|
||||||
|
const size_t num_columns = 1;
|
||||||
|
const size_t n_bins = 16;
|
||||||
|
|
||||||
|
Context ctx;
|
||||||
|
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
|
||||||
|
|
||||||
|
DeviceManager device_manager;
|
||||||
|
auto qu = device_manager.GetQueue(ctx.Device());
|
||||||
|
|
||||||
|
std::vector<float> data = {7, 3, 15};
|
||||||
|
auto p_fmat = GetDMatrixFromData(data, num_rows, num_columns);
|
||||||
|
|
||||||
|
DeviceMatrix dmat;
|
||||||
|
dmat.Init(qu, p_fmat.get());
|
||||||
|
common::GHistIndexMatrix gmat;
|
||||||
|
gmat.Init(qu, &ctx, dmat, n_bins);
|
||||||
|
|
||||||
|
std::vector<GradientPair> gpair_host = {{1, 2}, {3, 1}, {1, 1}};
|
||||||
|
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, gpair_host);
|
||||||
|
|
||||||
|
RegTree tree;
|
||||||
|
FeatureInteractionConstraintHost int_constraints;
|
||||||
|
ObjInfo task{ObjInfo::kRegression};
|
||||||
|
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
|
||||||
|
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
|
||||||
|
updater.SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
|
||||||
|
updater.SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());
|
||||||
|
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
|
||||||
|
|
||||||
|
updater.TestExpandWithDepthWise(gmat, p_fmat.get(), &tree, gpair);
|
||||||
|
|
||||||
|
const auto& nodes = tree.GetNodes();
|
||||||
|
std::vector<float> ans(data.size());
|
||||||
|
for (size_t data_idx = 0; data_idx < data.size(); ++data_idx) {
|
||||||
|
size_t node_idx = 0;
|
||||||
|
while (!nodes[node_idx].IsLeaf()) {
|
||||||
|
node_idx = data[data_idx] < nodes[node_idx].SplitCond() ? nodes[node_idx].LeftChild() : nodes[node_idx].RightChild();
|
||||||
|
}
|
||||||
|
ans[data_idx] = nodes[node_idx].LeafValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
ASSERT_NEAR(ans[0], -0.15, 1e-6);
|
||||||
|
ASSERT_NEAR(ans[1], -0.45, 1e-6);
|
||||||
|
ASSERT_NEAR(ans[2], -0.15, 1e-6);
|
||||||
|
}
|
||||||
|
|
||||||
TEST(SyclHistUpdater, Sampling) {
|
TEST(SyclHistUpdater, Sampling) {
|
||||||
xgboost::tree::TrainParam param;
|
xgboost::tree::TrainParam param;
|
||||||
param.UpdateAllowUnknown(Args{{"subsample", "0.7"}});
|
param.UpdateAllowUnknown(Args{{"subsample", "0.7"}});
|
||||||
@ -620,4 +676,12 @@ TEST(SyclHistUpdater, ExpandWithLossGuide) {
|
|||||||
TestHistUpdaterExpandWithLossGuide<double>(param);
|
TestHistUpdaterExpandWithLossGuide<double>(param);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(SyclHistUpdater, ExpandWithDepthWise) {
|
||||||
|
xgboost::tree::TrainParam param;
|
||||||
|
param.UpdateAllowUnknown(Args{{"max_depth", "2"}});
|
||||||
|
|
||||||
|
TestHistUpdaterExpandWithDepthWise<float>(param);
|
||||||
|
TestHistUpdaterExpandWithDepthWise<double>(param);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace xgboost::sycl::tree
|
} // namespace xgboost::sycl::tree
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user