change omp loop var to bst_omp_uint, add XGB_DLL to wrapper

This commit is contained in:
tqchen 2014-08-26 19:37:04 -07:00
parent 97467fe807
commit 7739f57c8b
13 changed files with 100 additions and 88 deletions

View File

@ -3,10 +3,10 @@
#include <utility>
#include <cstring>
#include "xgboost_R.h"
#include "../../wrapper/xgboost_wrapper.h"
#include "../../src/utils/utils.h"
#include "../../src/utils/omp.h"
#include "../../src/utils/matrix_csr.h"
#include "xgboost_wrapper.h"
#include "../src/utils/utils.h"
#include "../src/utils/omp.h"
#include "../src/utils/matrix_csr.h"
using namespace xgboost;
// implements error handling
@ -119,7 +119,7 @@ extern "C" {
}
}
SEXP XGDMatrixGetInfo_R(SEXP handle, SEXP field) {
size_t olen;
uint64_t olen;
const float *res = XGDMatrixGetFloatInfo(R_ExternalPtrAddr(handle),
CHAR(asChar(field)), &olen);
SEXP ret = PROTECT(allocVector(REALSXP, olen));
@ -188,7 +188,7 @@ extern "C" {
&vec_dmats[0], &vec_sptr[0], len));
}
SEXP XGBoosterPredict_R(SEXP handle, SEXP dmat, SEXP output_margin) {
size_t olen;
uint64_t olen;
const float *res = XGBoosterPredict(R_ExternalPtrAddr(handle),
R_ExternalPtrAddr(dmat),
asInteger(output_margin),
@ -207,13 +207,13 @@ extern "C" {
XGBoosterSaveModel(R_ExternalPtrAddr(handle), CHAR(asChar(fname)));
}
void XGBoosterDumpModel_R(SEXP handle, SEXP fname, SEXP fmap) {
size_t olen;
uint64_t olen;
const char **res = XGBoosterDumpModel(R_ExternalPtrAddr(handle),
CHAR(asChar(fmap)),
&olen);
FILE *fo = utils::FopenCheck(CHAR(asChar(fname)), "w");
for (size_t i = 0; i < olen; ++i) {
fprintf(fo, "booster[%u]:\n", static_cast<unsigned>(i));
fprintf(fo, "booster[%lu]:\n", i);
fprintf(fo, "%s", res[i]);
}
fclose(fo);

View File

@ -12,6 +12,7 @@
#include <cstring>
#include <algorithm>
#include "utils/io.h"
#include "utils/omp.h"
#include "utils/utils.h"
#include "utils/iterator.h"
#include "utils/random.h"
@ -370,9 +371,9 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
}
// sort columns
unsigned ncol = static_cast<unsigned>(this->NumCol());
bst_omp_uint ncol = static_cast<bst_omp_uint>(this->NumCol());
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ncol; ++i) {
for (bst_omp_uint i = 0; i < ncol; ++i) {
std::sort(&col_data_[0] + col_ptr_[i],
&col_data_[0] + col_ptr_[i + 1], Entry::CmpValue);
}

View File

@ -51,9 +51,9 @@ class GBLinear : public IGradBooster<FMatrix> {
// for all the output group
for (int gid = 0; gid < ngroup; ++gid) {
double sum_grad = 0.0, sum_hess = 0.0;
const unsigned ndata = static_cast<unsigned>(rowset.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static) reduction(+: sum_grad, sum_hess)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
bst_gpair &p = gpair[rowset[i] * ngroup + gid];
if (p.hess >= 0.0f) {
sum_grad += p.grad; sum_hess += p.hess;
@ -65,7 +65,7 @@ class GBLinear : public IGradBooster<FMatrix> {
model.bias()[gid] += dw;
// update grad value
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
bst_gpair &p = gpair[rowset[i] * ngroup + gid];
if (p.hess >= 0.0f) {
p.grad += p.hess * dw;
@ -73,9 +73,9 @@ class GBLinear : public IGradBooster<FMatrix> {
}
}
// number of features
const unsigned nfeat = static_cast<unsigned>(feat_index.size());
const bst_omp_uint nfeat = static_cast<bst_omp_uint>(feat_index.size());
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < nfeat; ++i) {
for (bst_omp_uint i = 0; i < nfeat; ++i) {
const bst_uint fid = feat_index[i];
for (int gid = 0; gid < ngroup; ++gid) {
double sum_grad = 0.0, sum_hess = 0.0;
@ -117,9 +117,9 @@ class GBLinear : public IGradBooster<FMatrix> {
// k is number of group
preds.resize(preds.size() + batch.size * ngroup);
// parallel over local batch
const unsigned nsize = static_cast<unsigned>(batch.size);
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < nsize; ++i) {
for (bst_omp_uint i = 0; i < nsize; ++i) {
const size_t ridx = batch.base_rowid + i;
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {

View File

@ -94,8 +94,9 @@ class GBTree : public IGradBooster<FMatrix> {
"must have exactly ngroup*nrow gpairs");
std::vector<bst_gpair> tmp(gpair.size()/ngroup);
for (int gid = 0; gid < ngroup; ++gid) {
bst_omp_uint nsize = static_cast<bst_omp_uint>(tmp.size());
#pragma omp parallel for schedule(static)
for (size_t i = 0; i < tmp.size(); ++i) {
for (bst_omp_uint i = 0; i < nsize; ++i) {
tmp[i] = gpair[i * ngroup + gid];
}
this->BoostNewTrees(tmp, fmat, info, gid);
@ -129,9 +130,9 @@ class GBTree : public IGradBooster<FMatrix> {
// k is number of group
preds.resize(preds.size() + batch.size * mparam.num_output_group);
// parallel over local batch
const unsigned nsize = static_cast<unsigned>(batch.size);
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < nsize; ++i) {
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
tree::RegTree::FVec &feats = thread_temp[tid];
int64_t ridx = static_cast<int64_t>(batch.base_rowid + i);

View File

@ -26,10 +26,10 @@ struct EvalEWiseBase : public IEvaluator {
const MetaInfo &info) const {
utils::Check(preds.size() == info.labels.size(),
"label and prediction size not match");
const unsigned ndata = static_cast<unsigned>(preds.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
float sum = 0.0, wsum = 0.0;
#pragma omp parallel for reduction(+: sum, wsum) schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
const float wt = info.GetWeight(i);
sum += Derived::EvalRow(info.labels[i], preds[i]) * wt;
wsum += wt;
@ -109,12 +109,12 @@ struct EvalAMS : public IEvaluator {
}
virtual float Eval(const std::vector<float> &preds,
const MetaInfo &info) const {
const unsigned ndata = static_cast<unsigned>(preds.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
utils::Check(info.weights.size() == ndata, "we need weight to evaluate ams");
std::vector< std::pair<float, unsigned> > rec(ndata);
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
rec[i] = std::make_pair(preds[i], i);
}
std::sort(rec.begin(), rec.end(), CmpFirst);
@ -211,7 +211,7 @@ struct EvalAuc : public IEvaluator {
const std::vector<unsigned> &gptr = info.group_ptr.size() == 0 ? tgptr : info.group_ptr;
utils::Check(gptr.back() == preds.size(),
"EvalAuc: group structure must match number of prediction");
const unsigned ngroup = static_cast<unsigned>(gptr.size() - 1);
const bst_omp_uint ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
// sum statictis
double sum_auc = 0.0f;
#pragma omp parallel reduction(+:sum_auc)
@ -219,7 +219,7 @@ struct EvalAuc : public IEvaluator {
// each thread takes a local rec
std::vector< std::pair<float, unsigned> > rec;
#pragma omp for schedule(static)
for (unsigned k = 0; k < ngroup; ++k) {
for (bst_omp_uint k = 0; k < ngroup; ++k) {
rec.clear();
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
rec.push_back(std::make_pair(preds[j], j));
@ -269,7 +269,7 @@ struct EvalRankList : public IEvaluator {
utils::Assert(gptr.size() != 0, "must specify group when constructing rank file");
utils::Assert(gptr.back() == preds.size(),
"EvalRanklist: group structure must match number of prediction");
const unsigned ngroup = static_cast<unsigned>(gptr.size() - 1);
const bst_omp_uint ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
// sum statistics
double sum_metric = 0.0f;
#pragma omp parallel reduction(+:sum_metric)
@ -277,7 +277,7 @@ struct EvalRankList : public IEvaluator {
// each thread takes a local rec
std::vector< std::pair<float, unsigned> > rec;
#pragma omp for schedule(static)
for (unsigned k = 0; k < ngroup; ++k) {
for (bst_omp_uint k = 0; k < ngroup; ++k) {
rec.clear();
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
rec.push_back(std::make_pair(preds[j], static_cast<int>(info.labels[j])));

View File

@ -253,17 +253,17 @@ class BoostLearner {
data.info.info, out_preds);
// add base margin
std::vector<float> &preds = *out_preds;
const unsigned ndata = static_cast<unsigned>(preds.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
if (data.info.base_margin.size() != 0) {
utils::Check(preds.size() == data.info.base_margin.size(),
"base_margin.size does not match with prediction size");
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] += data.info.base_margin[j];
}
} else {
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] += mparam.base_score;
}
}

View File

@ -116,9 +116,9 @@ class RegLossObj : public IObjFunction{
gpair.resize(preds.size());
// start calculating gradient
const unsigned nstep = static_cast<unsigned>(info.labels.size());
const unsigned ndata = static_cast<unsigned>(preds.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
const unsigned j = i % nstep;
float p = loss.PredTransform(preds[i]);
float w = info.GetWeight(j);
@ -132,9 +132,9 @@ class RegLossObj : public IObjFunction{
}
virtual void PredTransform(std::vector<float> *io_preds) {
std::vector<float> &preds = *io_preds;
const unsigned ndata = static_cast<unsigned>(preds.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] = loss.PredTransform(preds[j]);
}
}
@ -169,12 +169,12 @@ class SoftmaxMultiClassObj : public IObjFunction {
std::vector<bst_gpair> &gpair = *out_gpair;
gpair.resize(preds.size());
const unsigned nstep = static_cast<unsigned>(info.labels.size() * nclass);
const unsigned ndata = static_cast<unsigned>(preds.size() / nclass);
const unsigned ndata = static_cast<bst_omp_uint>(preds.size() / nclass);
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
for (int k = 0; k < nclass; ++k) {
rec[k] = preds[i * nclass + k];
}
@ -210,13 +210,13 @@ class SoftmaxMultiClassObj : public IObjFunction {
utils::Check(nclass != 0, "must set num_class to use softmax");
std::vector<float> &preds = *io_preds;
std::vector<float> tmp;
const unsigned ndata = static_cast<unsigned>(preds.size()/nclass);
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size()/nclass);
if (prob == 0) tmp.resize(ndata);
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (bst_omp_uint j = 0; j < ndata; ++j) {
for (int k = 0; k < nclass; ++k) {
rec[k] = preds[j * nclass + k];
}
@ -263,7 +263,7 @@ class LambdaRankObj : public IObjFunction {
const std::vector<unsigned> &gptr = info.group_ptr.size() == 0 ? tgptr : info.group_ptr;
utils::Check(gptr.size() != 0 && gptr.back() == info.labels.size(),
"group structure not consistent with #rows");
const unsigned ngroup = static_cast<unsigned>(gptr.size() - 1);
const bst_omp_uint ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
#pragma omp parallel
{
// parall construct, declare random number generator here, so that each
@ -273,7 +273,7 @@ class LambdaRankObj : public IObjFunction {
std::vector<ListEntry> lst;
std::vector< std::pair<float, unsigned> > rec;
#pragma omp for schedule(static)
for (unsigned k = 0; k < ngroup; ++k) {
for (bst_omp_uint k = 0; k < ngroup; ++k) {
lst.clear(); pairs.clear();
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
lst.push_back(ListEntry(preds[j], info.labels[j], j));

View File

@ -186,9 +186,9 @@ class ColMaker: public IUpdater<FMatrix> {
}
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
// setup position
const unsigned ndata = static_cast<unsigned>(rowset.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
const int tid = omp_get_thread_num();
if (position[ridx] < 0) continue;
@ -286,12 +286,12 @@ class ColMaker: public IUpdater<FMatrix> {
feat_set.resize(n);
}
// start enumeration
const unsigned nsize = static_cast<unsigned>(feat_set.size());
const bst_omp_uint nsize = static_cast<bst_omp_uint>(feat_set.size());
#if defined(_OPENMP)
const int batch_size = std::max(static_cast<int>(nsize / this->nthread / 32), 1);
#endif
#pragma omp parallel for schedule(dynamic, batch_size)
for (unsigned i = 0; i < nsize; ++i) {
for (bst_omp_uint i = 0; i < nsize; ++i) {
const unsigned fid = feat_set[i];
const int tid = omp_get_thread_num();
if (param.need_forward_search(fmat.GetColDensity(fid))) {
@ -321,9 +321,9 @@ class ColMaker: public IUpdater<FMatrix> {
inline void ResetPosition(const std::vector<int> &qexpand, const FMatrix &fmat, const RegTree &tree) {
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
// step 1, set default direct nodes to default, and leaf nodes to -1
const unsigned ndata = static_cast<unsigned>(rowset.size());
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < ndata; ++i) {
for (bst_omp_uint i = 0; i < ndata; ++i) {
const bst_uint ridx = rowset[i];
const int nid = position[ridx];
if (nid >= 0) {
@ -344,9 +344,9 @@ class ColMaker: public IUpdater<FMatrix> {
std::sort(fsplits.begin(), fsplits.end());
fsplits.resize(std::unique(fsplits.begin(), fsplits.end()) - fsplits.begin());
// start put things into right place
const unsigned nfeats = static_cast<unsigned>(fsplits.size());
const bst_omp_uint nfeats = static_cast<bst_omp_uint>(fsplits.size());
#pragma omp parallel for schedule(dynamic, 1)
for (unsigned i = 0; i < nfeats; ++i) {
for (bst_omp_uint i = 0; i < nfeats; ++i) {
const unsigned fid = fsplits[i];
for (typename FMatrix::ColIter it = fmat.GetSortedCol(fid); it.Next();) {
const bst_uint ridx = it.rindex();

View File

@ -56,9 +56,9 @@ class TreeRefresher: public IUpdater<FMatrix> {
const SparseBatch &batch = iter->Value();
utils::Check(batch.size < std::numeric_limits<unsigned>::max(),
"too large batch size ");
const unsigned nbatch = static_cast<unsigned>(batch.size);
const bst_omp_uint nbatch = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (unsigned i = 0; i < nbatch; ++i) {
for (bst_omp_uint i = 0; i < nbatch; ++i) {
SparseBatch::Inst inst = batch[i];
const int tid = omp_get_thread_num();
const bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);

View File

@ -7,6 +7,15 @@
*/
#if defined(_OPENMP)
#include <omp.h>
namespace xgboost {
// loop variable used in openmp
#ifdef _MSC_VER
typedef int bst_omp_uint;
#else
typedef unsigned bst_omp_uint;
#endif
} // namespace xgboost
#else
#ifndef DISABLE_OPENMP
#ifndef _MSC_VER

View File

@ -213,7 +213,7 @@ extern "C" {
&olen);
FILE *fo = utils::FopenCheck(CHAR(asChar(fname)), "w");
for (size_t i = 0; i < olen; ++i) {
fprintf(fo, "booster[%lu]:\n", i);
fprintf(fo, "booster[%u]:\n", static_cast<unsigned>(i));
fprintf(fo, "%s", res[i]);
}
fclose(fo);

View File

@ -32,9 +32,9 @@ class Booster: public learner::BoostLearner<FMatrixS> {
inline void BoostOneIter(const DataMatrix &train,
float *grad, float *hess, uint64_t len) {
this->gpair_.resize(len);
const unsigned ndata = static_cast<unsigned>(len);
const bst_omp_uint ndata = static_cast<bst_omp_uint>(len);
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
for (bst_omp_uint j = 0; j < ndata; ++j) {
gpair_[j] = bst_gpair(grad[j], hess[j]);
}
gbm_->DoBoost(train.fmat, train.info.info, &gpair_);

View File

@ -9,13 +9,14 @@
#include <cstdio>
// define uint64_t to be unsigned long
typedef unsigned long uint64_t;
#define XGB_DLL
extern "C" {
/*!
* \brief load a data matrix
* \return a loaded data matrix
*/
void* XGDMatrixCreateFromFile(const char *fname, int silent);
XGB_DLL void* XGDMatrixCreateFromFile(const char *fname, int silent);
/*!
* \brief create a matrix content from csr format
* \param indptr pointer to row headers
@ -25,11 +26,11 @@ extern "C" {
* \param nelem number of nonzero elements in the matrix
* \return created dmatrix
*/
void* XGDMatrixCreateFromCSR(const uint64_t *indptr,
const unsigned *indices,
const float *data,
uint64_t nindptr,
uint64_t nelem);
XGB_DLL void* XGDMatrixCreateFromCSR(const uint64_t *indptr,
const unsigned *indices,
const float *data,
uint64_t nindptr,
uint64_t nelem);
/*!
* \brief create matrix content from dense matrix
* \param data pointer to the data space
@ -38,10 +39,10 @@ extern "C" {
* \param missing which value to represent missing value
* \return created dmatrix
*/
void* XGDMatrixCreateFromMat(const float *data,
uint64_t nrow,
uint64_t ncol,
float missing);
XGB_DLL void* XGDMatrixCreateFromMat(const float *data,
uint64_t nrow,
uint64_t ncol,
float missing);
/*!
* \brief create a new dmatrix from sliced content of existing matrix
* \param handle instance of data matrix to be sliced
@ -49,20 +50,20 @@ extern "C" {
* \param len length of index set
* \return a sliced new matrix
*/
void* XGDMatrixSliceDMatrix(void *handle,
const int *idxset,
uint64_t len);
XGB_DLL void* XGDMatrixSliceDMatrix(void *handle,
const int *idxset,
uint64_t len);
/*!
* \brief free space in data matrix
*/
void XGDMatrixFree(void *handle);
XGB_DLL void XGDMatrixFree(void *handle);
/*!
* \brief load a data matrix into binary file
* \param handle a instance of data matrix
* \param fname file name
* \param silent print statistics when saving
*/
void XGDMatrixSaveBinary(void *handle, const char *fname, int silent);
XGB_DLL void XGDMatrixSaveBinary(void *handle, const char *fname, int silent);
/*!
* \brief set float vector to a content in info
* \param handle a instance of data matrix
@ -70,7 +71,7 @@ extern "C" {
* \param array pointer to float vector
* \param len length of array
*/
void XGDMatrixSetFloatInfo(void *handle, const char *field, const float *array, uint64_t len);
XGB_DLL void XGDMatrixSetFloatInfo(void *handle, const char *field, const float *array, uint64_t len);
/*!
* \brief set uint32 vector to a content in info
* \param handle a instance of data matrix
@ -78,14 +79,14 @@ extern "C" {
* \param array pointer to float vector
* \param len length of array
*/
void XGDMatrixSetUIntInfo(void *handle, const char *field, const unsigned *array, uint64_t len);
XGB_DLL void XGDMatrixSetUIntInfo(void *handle, const char *field, const unsigned *array, uint64_t len);
/*!
* \brief set label of the training matrix
* \param handle a instance of data matrix
* \param group pointer to group size
* \param len length of array
*/
void XGDMatrixSetGroup(void *handle, const unsigned *group, uint64_t len);
XGB_DLL void XGDMatrixSetGroup(void *handle, const unsigned *group, uint64_t len);
/*!
* \brief get float info vector from matrix
* \param handle a instance of data matrix
@ -93,7 +94,7 @@ extern "C" {
* \param out_len used to set result length
* \return pointer to the result
*/
const float* XGDMatrixGetFloatInfo(const void *handle, const char *field, uint64_t* out_len);
XGB_DLL const float* XGDMatrixGetFloatInfo(const void *handle, const char *field, uint64_t* out_len);
/*!
* \brief get uint32 info vector from matrix
* \param handle a instance of data matrix
@ -101,37 +102,37 @@ extern "C" {
* \param out_len used to set result length
* \return pointer to the result
*/
const unsigned* XGDMatrixGetUIntInfo(const void *handle, const char *field, uint64_t* out_len);
XGB_DLL const unsigned* XGDMatrixGetUIntInfo(const void *handle, const char *field, uint64_t* out_len);
/*!
* \brief return number of rows
*/
uint64_t XGDMatrixNumRow(const void *handle);
XGB_DLL uint64_t XGDMatrixNumRow(const void *handle);
// --- start XGBoost class
/*!
* \brief create xgboost learner
* \param dmats matrices that are set to be cached
* \param len length of dmats
*/
void *XGBoosterCreate(void* dmats[], uint64_t len);
XGB_DLL void *XGBoosterCreate(void* dmats[], uint64_t len);
/*!
* \brief free obj in handle
* \param handle handle to be freed
*/
void XGBoosterFree(void* handle);
XGB_DLL void XGBoosterFree(void* handle);
/*!
* \brief set parameters
* \param handle handle
* \param name parameter name
* \param val value of parameter
*/
void XGBoosterSetParam(void *handle, const char *name, const char *value);
XGB_DLL void XGBoosterSetParam(void *handle, const char *name, const char *value);
/*!
* \brief update the model in one round using dtrain
* \param handle handle
* \param iter current iteration rounds
* \param dtrain training data
*/
void XGBoosterUpdateOneIter(void *handle, int iter, void *dtrain);
XGB_DLL void XGBoosterUpdateOneIter(void *handle, int iter, void *dtrain);
/*!
* \brief update the model, by directly specify gradient and second order gradient,
* this can be used to replace UpdateOneIter, to support customized loss function
@ -141,8 +142,8 @@ extern "C" {
* \param hess second order gradient statistics
* \param len length of grad/hess array
*/
void XGBoosterBoostOneIter(void *handle, void *dtrain,
float *grad, float *hess, uint64_t len);
XGB_DLL void XGBoosterBoostOneIter(void *handle, void *dtrain,
float *grad, float *hess, uint64_t len);
/*!
* \brief get evaluation statistics for xgboost
* \param handle handle
@ -152,8 +153,8 @@ extern "C" {
* \param len length of dmats
* \return the string containing evaluation stati
*/
const char *XGBoosterEvalOneIter(void *handle, int iter, void *dmats[],
const char *evnames[], uint64_t len);
XGB_DLL const char *XGBoosterEvalOneIter(void *handle, int iter, void *dmats[],
const char *evnames[], uint64_t len);
/*!
* \brief make prediction based on dmat
* \param handle handle
@ -161,19 +162,19 @@ extern "C" {
* \param output_margin whether only output raw margin value
* \param len used to store length of returning result
*/
const float *XGBoosterPredict(void *handle, void *dmat, int output_margin, uint64_t *len);
XGB_DLL const float *XGBoosterPredict(void *handle, void *dmat, int output_margin, uint64_t *len);
/*!
* \brief load model from existing file
* \param handle handle
* \param fname file name
*/
void XGBoosterLoadModel(void *handle, const char *fname);
XGB_DLL void XGBoosterLoadModel(void *handle, const char *fname);
/*!
* \brief save model into existing file
* \param handle handle
* \param fname file name
*/
void XGBoosterSaveModel(const void *handle, const char *fname);
XGB_DLL void XGBoosterSaveModel(const void *handle, const char *fname);
/*!
* \brief dump model, return array of strings representing model dump
* \param handle handle
@ -181,7 +182,7 @@ extern "C" {
* \param out_len length of output array
* \return char *data[], representing dump of each model
*/
const char **XGBoosterDumpModel(void *handle, const char *fmap,
uint64_t *out_len);
XGB_DLL const char **XGBoosterDumpModel(void *handle, const char *fmap,
uint64_t *out_len);
};
#endif // XGBOOST_WRAPPER_H_