Fix parameter documentation inconsistencies (#2584)

* fix indentation - otherwise list items are rendered incorrectly
* consistency: no spaces inside square brackets
This commit is contained in:
René Scheibe 2017-08-07 19:07:10 +02:00 committed by Michaël Benesty
parent a0c5bde024
commit 75ea07b847

View File

@ -154,7 +154,7 @@ Parameters for Tweedie Regression
Learning Task Parameters Learning Task Parameters
------------------------ ------------------------
Specify the learning task and the corresponding learning objective. The objective options are below: Specify the learning task and the corresponding learning objective. The objective options are below:
* objective [ default=reg:linear ] * objective [default=reg:linear]
- "reg:linear" --linear regression - "reg:linear" --linear regression
- "reg:logistic" --logistic regression - "reg:logistic" --logistic regression
- "binary:logistic" --logistic regression for binary classification, output probability - "binary:logistic" --logistic regression for binary classification, output probability
@ -166,10 +166,10 @@ Specify the learning task and the corresponding learning objective. The objectiv
- "rank:pairwise" --set XGBoost to do ranking task by minimizing the pairwise loss - "rank:pairwise" --set XGBoost to do ranking task by minimizing the pairwise loss
- "reg:gamma" --gamma regression with log-link. Output is a mean of gamma distribution. It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be [gamma-distributed](https://en.wikipedia.org/wiki/Gamma_distribution#Applications) - "reg:gamma" --gamma regression with log-link. Output is a mean of gamma distribution. It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be [gamma-distributed](https://en.wikipedia.org/wiki/Gamma_distribution#Applications)
- "reg:tweedie" --Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be [Tweedie-distributed](https://en.wikipedia.org/wiki/Tweedie_distribution#Applications). - "reg:tweedie" --Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be [Tweedie-distributed](https://en.wikipedia.org/wiki/Tweedie_distribution#Applications).
* base_score [ default=0.5 ] * base_score [default=0.5]
- the initial prediction score of all instances, global bias - the initial prediction score of all instances, global bias
- for sufficient number of iterations, changing this value will not have too much effect. - for sufficient number of iterations, changing this value will not have too much effect.
* eval_metric [ default according to objective ] * eval_metric [default according to objective]
- evaluation metrics for validation data, a default metric will be assigned according to objective (rmse for regression, and error for classification, mean average precision for ranking ) - evaluation metrics for validation data, a default metric will be assigned according to objective (rmse for regression, and error for classification, mean average precision for ranking )
- User can add multiple evaluation metrics, for python user, remember to pass the metrics in as list of parameters pairs instead of map, so that latter 'eval_metric' won't override previous one - User can add multiple evaluation metrics, for python user, remember to pass the metrics in as list of parameters pairs instead of map, so that latter 'eval_metric' won't override previous one
- The choices are listed below: - The choices are listed below:
@ -190,13 +190,13 @@ training repeatedly
- "gamma-nloglik": negative log-likelihood for gamma regression - "gamma-nloglik": negative log-likelihood for gamma regression
- "gamma-deviance": residual deviance for gamma regression - "gamma-deviance": residual deviance for gamma regression
- "tweedie-nloglik": negative log-likelihood for Tweedie regression (at a specified value of the tweedie_variance_power parameter) - "tweedie-nloglik": negative log-likelihood for Tweedie regression (at a specified value of the tweedie_variance_power parameter)
* seed [ default=0 ] * seed [default=0]
- random number seed. - random number seed.
Command Line Parameters Command Line Parameters
----------------------- -----------------------
The following parameters are only used in the console version of xgboost The following parameters are only used in the console version of xgboost
* use_buffer [ default=1 ] * use_buffer [default=1]
- Whether to create a binary buffer from text input. Doing so normally will speed up loading times - Whether to create a binary buffer from text input. Doing so normally will speed up loading times
* num_round * num_round
- The number of rounds for boosting - The number of rounds for boosting