add pathdump
This commit is contained in:
parent
4a612eb3ba
commit
733f8ae393
@ -57,7 +57,7 @@ namespace xgboost{
|
||||
|
||||
virtual int GetLeafIndex( const std::vector<float> &feat,
|
||||
const std::vector<bool> &funknown,
|
||||
unsigned gid = 0 ){
|
||||
unsigned gid = 0 ){
|
||||
// start from groups that belongs to current data
|
||||
int pid = (int)gid;
|
||||
// tranverse tree
|
||||
@ -67,18 +67,28 @@ namespace xgboost{
|
||||
}
|
||||
return pid;
|
||||
}
|
||||
|
||||
virtual void PredPath( std::vector<int> &path, const FMatrixS::Line &feat, unsigned gid = 0 ){
|
||||
path.clear();
|
||||
this->InitTmp();
|
||||
this->PrepareTmp( feat );
|
||||
|
||||
int pid = (int)gid;
|
||||
path.push_back( pid );
|
||||
// tranverse tree
|
||||
while( !tree[ pid ].is_leaf() ){
|
||||
unsigned split_index = tree[ pid ].split_index();
|
||||
pid = this->GetNext( pid, tmp_feat[ split_index ], tmp_funknown[ split_index ] );
|
||||
path.push_back( pid );
|
||||
}
|
||||
this->DropTmp( feat );
|
||||
}
|
||||
|
||||
virtual float Predict( const FMatrixS::Line &feat, unsigned gid = 0 ){
|
||||
this->InitTmp();
|
||||
for( unsigned i = 0; i < feat.len; i ++ ){
|
||||
utils::Assert( feat[i].findex < (unsigned)tmp_funknown.size() , "input feature execeed bound" );
|
||||
tmp_funknown[ feat[i].findex ] = false;
|
||||
tmp_feat[ feat[i].findex ] = feat[i].fvalue;
|
||||
}
|
||||
this->PrepareTmp( feat );
|
||||
int pid = this->GetLeafIndex( tmp_feat, tmp_funknown, gid );
|
||||
// set back
|
||||
for( unsigned i = 0; i < feat.len; i ++ ){
|
||||
tmp_funknown[ feat[i].findex ] = true;
|
||||
}
|
||||
this->DropTmp( feat );
|
||||
return tree[ pid ].leaf_value();
|
||||
}
|
||||
virtual float Predict( const std::vector<float> &feat,
|
||||
@ -127,6 +137,18 @@ namespace xgboost{
|
||||
std::fill( tmp_funknown.begin(), tmp_funknown.end(), true );
|
||||
}
|
||||
}
|
||||
inline void PrepareTmp( const FMatrixS::Line &feat ){
|
||||
for( unsigned i = 0; i < feat.len; i ++ ){
|
||||
utils::Assert( feat[i].findex < (unsigned)tmp_funknown.size() , "input feature execeed bound" );
|
||||
tmp_funknown[ feat[i].findex ] = false;
|
||||
tmp_feat[ feat[i].findex ] = feat[i].fvalue;
|
||||
}
|
||||
}
|
||||
inline void DropTmp( const FMatrixS::Line &feat ){
|
||||
for( unsigned i = 0; i < feat.len; i ++ ){
|
||||
tmp_funknown[ feat[i].findex ] = true;
|
||||
}
|
||||
}
|
||||
|
||||
inline int GetNext( int pid, float fvalue, bool is_unknown ){
|
||||
float split_value = tree[ pid ].split_cond();
|
||||
|
||||
@ -65,6 +65,14 @@ namespace xgboost{
|
||||
std::vector<float> &hess,
|
||||
const FMatrixS &feats,
|
||||
const std::vector<unsigned> &root_index ) = 0;
|
||||
/*!
|
||||
* \brief predict the path ids along a trees, for given sparse feature vector. When booster is a tree
|
||||
* \param path the result of path
|
||||
* \param rid root id of current instance, default = 0
|
||||
*/
|
||||
virtual void PredPath( std::vector<int> &path, const FMatrixS::Line &feat, unsigned rid = 0 ){
|
||||
utils::Error( "not implemented" );
|
||||
}
|
||||
/*!
|
||||
* \brief predict values for given sparse feature vector
|
||||
* NOTE: in tree implementation, this is not threadsafe, used dense version to ensure threadsafety
|
||||
|
||||
@ -179,6 +179,25 @@ namespace xgboost{
|
||||
boosters[i]->DumpModel( fo );
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief Dump path of all trees
|
||||
* \param fo text file
|
||||
* \param data input data
|
||||
*/
|
||||
inline void DumpPath( FILE *fo, const FMatrixS &data ){
|
||||
for( size_t i = 0; i < data.NumRow(); ++ i ){
|
||||
for( size_t j = 0; j < boosters.size(); ++ j ){
|
||||
if( j != 0 ) fprintf( fo, "\t" );
|
||||
std::vector<int> path;
|
||||
boosters[j]->PredPath( path, data[i] );
|
||||
fprintf( fo, "%d", path[0] );
|
||||
for( size_t k = 1; k < path.size(); ++ k ){
|
||||
fprintf( fo, ",%d", path[k] );
|
||||
}
|
||||
}
|
||||
fprintf( fo, "\n" );
|
||||
}
|
||||
}
|
||||
public:
|
||||
/*!
|
||||
* \brief do gradient boost training for one step, using the information given
|
||||
|
||||
@ -4,6 +4,8 @@ save_period=0
|
||||
|
||||
data = "agaricus.txt.train"
|
||||
eval[test] = "agaricus.txt.test"
|
||||
test:data = "agaricus.txt.test"
|
||||
|
||||
|
||||
booster_type = 0
|
||||
loss_type = 2
|
||||
|
||||
@ -3,4 +3,5 @@ python mapfeat.py
|
||||
python mknfold.py agaricus.txt 1
|
||||
../../xgboost mushroom.conf
|
||||
../../xgboost mushroom.conf task=dump model_in=0003.model
|
||||
../../xgboost mushroom.conf task=dumppath model_in=0003.model
|
||||
python maptree.py
|
||||
|
||||
@ -99,6 +99,14 @@ namespace xgboost{
|
||||
inline void DumpModel( FILE *fo ){
|
||||
base_model.DumpModel( fo );
|
||||
}
|
||||
/*!
|
||||
* \brief Dump path of all trees
|
||||
* \param fo text file
|
||||
* \param data input data
|
||||
*/
|
||||
inline void DumpPath( FILE *fo, const DMatrix &data ){
|
||||
base_model.DumpPath( fo, data.data );
|
||||
}
|
||||
/*!
|
||||
* \brief save model to stream
|
||||
* \param fo output stream
|
||||
|
||||
@ -34,11 +34,15 @@ namespace xgboost{
|
||||
}
|
||||
this->InitData();
|
||||
this->InitLearner();
|
||||
if( !strcmp( task.c_str(), "dump") ){
|
||||
if( task == "dump" ){
|
||||
this->TaskDump();
|
||||
return 0;
|
||||
}
|
||||
if( !strcmp( task.c_str(), "test") ){
|
||||
if( task == "dumppath" ){
|
||||
this->TaskDumpPath();
|
||||
return 0;
|
||||
}
|
||||
if( task == "test" ){
|
||||
this->TaskTest();
|
||||
}else{
|
||||
this->TaskTrain();
|
||||
@ -73,6 +77,7 @@ namespace xgboost{
|
||||
model_in = "NULL";
|
||||
name_pred = "pred.txt";
|
||||
name_dump = "dump.txt";
|
||||
name_dumppath = "dump.path.txt";
|
||||
model_dir_path = "./";
|
||||
}
|
||||
~RegBoostTask( void ){
|
||||
@ -82,8 +87,8 @@ namespace xgboost{
|
||||
}
|
||||
private:
|
||||
inline void InitData( void ){
|
||||
if( !strcmp( task.c_str(), "dump") ) return;
|
||||
if( !strcmp( task.c_str(), "test") ){
|
||||
if( task == "dump") return;
|
||||
if( task == "test" || task == "dumppath" ){
|
||||
data.CacheLoad( test_path.c_str() );
|
||||
}else{
|
||||
// training
|
||||
@ -101,12 +106,12 @@ namespace xgboost{
|
||||
while( cfg.Next() ){
|
||||
learner.SetParam( cfg.name(), cfg.val() );
|
||||
}
|
||||
if( strcmp( model_in.c_str(), "NULL" ) != 0 ){
|
||||
if( model_in != "NULL" ){
|
||||
utils::FileStream fi( utils::FopenCheck( model_in.c_str(), "rb") );
|
||||
learner.LoadModel( fi );
|
||||
fi.Close();
|
||||
}else{
|
||||
utils::Assert( !strcmp( task.c_str(), "train"), "model_in not specified" );
|
||||
utils::Assert( task == "train", "model_in not specified" );
|
||||
learner.InitModel();
|
||||
}
|
||||
learner.InitTrainer();
|
||||
@ -138,6 +143,11 @@ namespace xgboost{
|
||||
learner.DumpModel( fo );
|
||||
fclose( fo );
|
||||
}
|
||||
inline void TaskDumpPath( void ){
|
||||
FILE *fo = utils::FopenCheck( name_dumppath.c_str(), "w" );
|
||||
learner.DumpPath( fo, data );
|
||||
fclose( fo );
|
||||
}
|
||||
inline void SaveModel( int i ) const{
|
||||
char fname[256];
|
||||
sprintf( fname ,"%s/%04d.model", model_dir_path.c_str(), i+1 );
|
||||
@ -175,6 +185,8 @@ namespace xgboost{
|
||||
std::string name_pred;
|
||||
/* \brief name of dump file */
|
||||
std::string name_dump;
|
||||
/* \brief name of dump path file */
|
||||
std::string name_dumppath;
|
||||
/* \brief the paths of validation data sets */
|
||||
std::vector<std::string> eval_data_paths;
|
||||
/* \brief the names of the evaluation data used in output log */
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user