More in-memory input support for column split (#9685)
This commit is contained in:
parent
83cdf14b2c
commit
6fbe6248f4
@ -8,6 +8,7 @@ import importlib.util
|
||||
import multiprocessing
|
||||
import os
|
||||
import platform
|
||||
import queue
|
||||
import socket
|
||||
import sys
|
||||
import threading
|
||||
@ -942,13 +943,20 @@ def project_root(path: str) -> str:
|
||||
return normpath(os.path.join(demo_dir(path), os.path.pardir))
|
||||
|
||||
|
||||
def run_with_rabit(world_size: int, test_fn: Callable) -> None:
|
||||
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size)
|
||||
tracker.start(world_size)
|
||||
def run_with_rabit(
|
||||
world_size: int, test_fn: Callable[..., Any], *args: Any, **kwargs: Any
|
||||
) -> None:
|
||||
exception_queue: queue.Queue = queue.Queue()
|
||||
|
||||
def run_worker(rabit_env: Dict[str, Union[str, int]]) -> None:
|
||||
try:
|
||||
with xgb.collective.CommunicatorContext(**rabit_env):
|
||||
test_fn()
|
||||
test_fn(*args, **kwargs)
|
||||
except Exception as e: # pylint: disable=broad-except
|
||||
exception_queue.put(e)
|
||||
|
||||
tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size)
|
||||
tracker.start(world_size)
|
||||
|
||||
workers = []
|
||||
for _ in range(world_size):
|
||||
@ -957,5 +965,20 @@ def run_with_rabit(world_size: int, test_fn: Callable) -> None:
|
||||
worker.start()
|
||||
for worker in workers:
|
||||
worker.join()
|
||||
assert exception_queue.empty(), f"Worker failed: {exception_queue.get()}"
|
||||
|
||||
tracker.join()
|
||||
|
||||
|
||||
def column_split_feature_names(
|
||||
feature_names: List[Union[str, int]], world_size: int
|
||||
) -> List[str]:
|
||||
"""Get the global list of feature names from the local feature names."""
|
||||
return [
|
||||
f"{rank}.{feature}" for rank in range(world_size) for feature in feature_names
|
||||
]
|
||||
|
||||
|
||||
def is_windows() -> bool:
|
||||
"""Check if the current platform is Windows."""
|
||||
return platform.system() == "Windows"
|
||||
|
||||
@ -19,11 +19,13 @@ class LintersPaths:
|
||||
# tests
|
||||
"tests/python/test_config.py",
|
||||
"tests/python/test_data_iterator.py",
|
||||
"tests/python/test_dmatrix.py",
|
||||
"tests/python/test_dt.py",
|
||||
"tests/python/test_predict.py",
|
||||
"tests/python/test_quantile_dmatrix.py",
|
||||
"tests/python/test_tree_regularization.py",
|
||||
"tests/python/test_shap.py",
|
||||
"tests/python/test_with_pandas.py",
|
||||
"tests/python-gpu/test_gpu_data_iterator.py",
|
||||
"tests/python-gpu/test_gpu_prediction.py",
|
||||
"tests/python-gpu/load_pickle.py",
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import csv
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
@ -15,7 +16,7 @@ from xgboost.testing.data import np_dtypes
|
||||
|
||||
rng = np.random.RandomState(1)
|
||||
|
||||
dpath = 'demo/data/'
|
||||
dpath = "demo/data/"
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
@ -67,12 +68,13 @@ def set_base_margin_info(DType, DMatrixT, tm: str):
|
||||
class TestDMatrix:
|
||||
def test_warn_missing(self):
|
||||
from xgboost import data
|
||||
|
||||
with pytest.warns(UserWarning):
|
||||
data._warn_unused_missing('uri', 4)
|
||||
data._warn_unused_missing("uri", 4)
|
||||
|
||||
with pytest.warns(None) as record:
|
||||
data._warn_unused_missing('uri', None)
|
||||
data._warn_unused_missing('uri', np.nan)
|
||||
data._warn_unused_missing("uri", None)
|
||||
data._warn_unused_missing("uri", np.nan)
|
||||
|
||||
assert len(record) == 0
|
||||
|
||||
@ -106,7 +108,7 @@ class TestDMatrix:
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(data)
|
||||
# object dtype
|
||||
data = np.array([['a', 'b'], ['c', 'd']])
|
||||
data = np.array([["a", "b"], ["c", "d"]])
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(data)
|
||||
|
||||
@ -148,18 +150,18 @@ class TestDMatrix:
|
||||
y = np.array([12, 34, 56], np.float32)[::2]
|
||||
from_view = xgb.DMatrix(np.array([[]]), label=y).get_label()
|
||||
from_array = xgb.DMatrix(np.array([[]]), label=y + 0).get_label()
|
||||
assert (from_view.shape == from_array.shape)
|
||||
assert from_view.shape == from_array.shape
|
||||
assert (from_view == from_array).all()
|
||||
|
||||
# Sliced UInt array
|
||||
z = np.array([12, 34, 56], np.uint32)[::2]
|
||||
dmat = xgb.DMatrix(np.array([[]]))
|
||||
dmat.set_uint_info('group', z)
|
||||
from_view = dmat.get_uint_info('group_ptr')
|
||||
dmat.set_uint_info("group", z)
|
||||
from_view = dmat.get_uint_info("group_ptr")
|
||||
dmat = xgb.DMatrix(np.array([[]]))
|
||||
dmat.set_uint_info('group', z + 0)
|
||||
from_array = dmat.get_uint_info('group_ptr')
|
||||
assert (from_view.shape == from_array.shape)
|
||||
dmat.set_uint_info("group", z + 0)
|
||||
from_array = dmat.get_uint_info("group_ptr")
|
||||
assert from_view.shape == from_array.shape
|
||||
assert (from_view == from_array).all()
|
||||
|
||||
def test_slice(self):
|
||||
@ -181,9 +183,11 @@ class TestDMatrix:
|
||||
|
||||
# Slicing works with label and other meta info fields
|
||||
np.testing.assert_equal(sliced.get_label(), y[1:7])
|
||||
np.testing.assert_equal(sliced.get_float_info('feature_weights'), fw)
|
||||
np.testing.assert_equal(sliced.get_float_info("feature_weights"), fw)
|
||||
np.testing.assert_equal(sliced.get_base_margin(), base_margin[1:7, :].flatten())
|
||||
np.testing.assert_equal(sliced.get_base_margin(), sliced.get_float_info('base_margin'))
|
||||
np.testing.assert_equal(
|
||||
sliced.get_base_margin(), sliced.get_float_info("base_margin")
|
||||
)
|
||||
|
||||
# Slicing a DMatrix results into a DMatrix that's equivalent to a DMatrix that's
|
||||
# constructed from the corresponding NumPy slice
|
||||
@ -191,11 +195,15 @@ class TestDMatrix:
|
||||
d2.set_base_margin(base_margin[1:7, :])
|
||||
eval_res = {}
|
||||
_ = xgb.train(
|
||||
{'num_class': 3, 'objective': 'multi:softprob',
|
||||
'eval_metric': 'mlogloss'},
|
||||
{"num_class": 3, "objective": "multi:softprob", "eval_metric": "mlogloss"},
|
||||
d,
|
||||
num_boost_round=2, evals=[(d2, 'd2'), (sliced, 'sliced')], evals_result=eval_res)
|
||||
np.testing.assert_equal(eval_res['d2']['mlogloss'], eval_res['sliced']['mlogloss'])
|
||||
num_boost_round=2,
|
||||
evals=[(d2, "d2"), (sliced, "sliced")],
|
||||
evals_result=eval_res,
|
||||
)
|
||||
np.testing.assert_equal(
|
||||
eval_res["d2"]["mlogloss"], eval_res["sliced"]["mlogloss"]
|
||||
)
|
||||
|
||||
ridxs_arr = np.array(ridxs)[1:] # handles numpy slice correctly
|
||||
sliced = d.slice(ridxs_arr)
|
||||
@ -206,17 +214,17 @@ class TestDMatrix:
|
||||
|
||||
# different length
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(data, feature_names=list('abcdef'))
|
||||
xgb.DMatrix(data, feature_names=list("abcdef"))
|
||||
# contains duplicates
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(data, feature_names=['a', 'b', 'c', 'd', 'd'])
|
||||
xgb.DMatrix(data, feature_names=["a", "b", "c", "d", "d"])
|
||||
# contains symbol
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(data, feature_names=['a', 'b', 'c', 'd', 'e<1'])
|
||||
xgb.DMatrix(data, feature_names=["a", "b", "c", "d", "e<1"])
|
||||
|
||||
dm = xgb.DMatrix(data)
|
||||
dm.feature_names = list('abcde')
|
||||
assert dm.feature_names == list('abcde')
|
||||
dm.feature_names = list("abcde")
|
||||
assert dm.feature_names == list("abcde")
|
||||
|
||||
assert dm.slice([0, 1]).num_col() == dm.num_col()
|
||||
assert dm.slice([0, 1]).feature_names == dm.feature_names
|
||||
@ -224,11 +232,11 @@ class TestDMatrix:
|
||||
with pytest.raises(ValueError, match=r"Duplicates found: \['bar'\]"):
|
||||
dm.feature_names = ["bar"] * (data.shape[1] - 2) + ["a", "b"]
|
||||
|
||||
dm.feature_types = list('qiqiq')
|
||||
assert dm.feature_types == list('qiqiq')
|
||||
dm.feature_types = list("qiqiq")
|
||||
assert dm.feature_types == list("qiqiq")
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dm.feature_types = list('abcde')
|
||||
dm.feature_types = list("abcde")
|
||||
|
||||
# reset
|
||||
dm.feature_names = None
|
||||
@ -240,20 +248,23 @@ class TestDMatrix:
|
||||
data = np.random.randn(100, 5)
|
||||
target = np.array([0, 1] * 50)
|
||||
|
||||
cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'],
|
||||
[u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']]
|
||||
cases = [
|
||||
["Feature1", "Feature2", "Feature3", "Feature4", "Feature5"],
|
||||
["要因1", "要因2", "要因3", "要因4", "要因5"],
|
||||
]
|
||||
|
||||
for features in cases:
|
||||
dm = xgb.DMatrix(data, label=target,
|
||||
feature_names=features)
|
||||
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
||||
assert dm.feature_names == features
|
||||
assert dm.num_row() == 100
|
||||
assert dm.num_col() == 5
|
||||
|
||||
params = {'objective': 'multi:softprob',
|
||||
'eval_metric': 'mlogloss',
|
||||
'eta': 0.3,
|
||||
'num_class': 3}
|
||||
params = {
|
||||
"objective": "multi:softprob",
|
||||
"eval_metric": "mlogloss",
|
||||
"eta": 0.3,
|
||||
"num_class": 3,
|
||||
}
|
||||
|
||||
bst = xgb.train(params, dm, num_boost_round=10)
|
||||
scores = bst.get_fscore()
|
||||
@ -264,22 +275,19 @@ class TestDMatrix:
|
||||
bst.predict(dm)
|
||||
|
||||
# different feature name must raises error
|
||||
dm = xgb.DMatrix(dummy, feature_names=list('abcde'))
|
||||
dm = xgb.DMatrix(dummy, feature_names=list("abcde"))
|
||||
with pytest.raises(ValueError):
|
||||
bst.predict(dm)
|
||||
|
||||
@pytest.mark.skipif(**tm.no_pandas())
|
||||
def test_save_binary(self):
|
||||
import pandas as pd
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = os.path.join(tmpdir, 'm.dmatrix')
|
||||
data = pd.DataFrame({
|
||||
"a": [0, 1],
|
||||
"b": [2, 3],
|
||||
"c": [4, 5]
|
||||
})
|
||||
path = os.path.join(tmpdir, "m.dmatrix")
|
||||
data = pd.DataFrame({"a": [0, 1], "b": [2, 3], "c": [4, 5]})
|
||||
m0 = xgb.DMatrix(data.loc[:, ["a", "b"]], data["c"])
|
||||
assert m0.feature_names == ['a', 'b']
|
||||
assert m0.feature_names == ["a", "b"]
|
||||
m0.save_binary(path)
|
||||
m1 = xgb.DMatrix(path)
|
||||
assert m0.feature_names == m1.feature_names
|
||||
@ -287,10 +295,10 @@ class TestDMatrix:
|
||||
|
||||
def test_get_info(self):
|
||||
dtrain, _ = tm.load_agaricus(__file__)
|
||||
dtrain.get_float_info('label')
|
||||
dtrain.get_float_info('weight')
|
||||
dtrain.get_float_info('base_margin')
|
||||
dtrain.get_uint_info('group_ptr')
|
||||
dtrain.get_float_info("label")
|
||||
dtrain.get_float_info("weight")
|
||||
dtrain.get_float_info("base_margin")
|
||||
dtrain.get_uint_info("group_ptr")
|
||||
|
||||
group_len = np.array([2, 3, 4])
|
||||
dtrain.set_group(group_len)
|
||||
@ -305,7 +313,7 @@ class TestDMatrix:
|
||||
|
||||
Xy = xgb.DMatrix(X, y)
|
||||
Xy.set_info(qid=qid)
|
||||
group_ptr = Xy.get_uint_info('group_ptr')
|
||||
group_ptr = Xy.get_uint_info("group_ptr")
|
||||
assert group_ptr[0] == 0
|
||||
assert group_ptr[-1] == rows
|
||||
|
||||
@ -317,11 +325,11 @@ class TestDMatrix:
|
||||
X = rng.randn(kRows, kCols)
|
||||
m = xgb.DMatrix(X)
|
||||
m.set_info(feature_weights=fw)
|
||||
np.testing.assert_allclose(fw, m.get_float_info('feature_weights'))
|
||||
np.testing.assert_allclose(fw, m.get_float_info("feature_weights"))
|
||||
# Handle empty
|
||||
m.set_info(feature_weights=np.empty((0, )))
|
||||
m.set_info(feature_weights=np.empty((0,)))
|
||||
|
||||
assert m.get_float_info('feature_weights').shape[0] == 0
|
||||
assert m.get_float_info("feature_weights").shape[0] == 0
|
||||
|
||||
fw -= 1
|
||||
|
||||
@ -331,13 +339,13 @@ class TestDMatrix:
|
||||
def test_sparse_dmatrix_csr(self):
|
||||
nrow = 100
|
||||
ncol = 1000
|
||||
x = rand(nrow, ncol, density=0.0005, format='csr', random_state=rng)
|
||||
x = rand(nrow, ncol, density=0.0005, format="csr", random_state=rng)
|
||||
assert x.indices.max() < ncol
|
||||
x.data[:] = 1
|
||||
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
||||
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
||||
watchlist = [(dtrain, 'train')]
|
||||
param = {'max_depth': 3, 'objective': 'binary:logistic', 'verbosity': 0}
|
||||
watchlist = [(dtrain, "train")]
|
||||
param = {"max_depth": 3, "objective": "binary:logistic", "verbosity": 0}
|
||||
bst = xgb.train(param, dtrain, 5, watchlist)
|
||||
bst.predict(dtrain)
|
||||
|
||||
@ -369,13 +377,13 @@ class TestDMatrix:
|
||||
def test_sparse_dmatrix_csc(self):
|
||||
nrow = 1000
|
||||
ncol = 100
|
||||
x = rand(nrow, ncol, density=0.0005, format='csc', random_state=rng)
|
||||
x = rand(nrow, ncol, density=0.0005, format="csc", random_state=rng)
|
||||
assert x.indices.max() < nrow - 1
|
||||
x.data[:] = 1
|
||||
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
||||
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
||||
watchlist = [(dtrain, 'train')]
|
||||
param = {'max_depth': 3, 'objective': 'binary:logistic', 'verbosity': 0}
|
||||
watchlist = [(dtrain, "train")]
|
||||
param = {"max_depth": 3, "objective": "binary:logistic", "verbosity": 0}
|
||||
bst = xgb.train(param, dtrain, 5, watchlist)
|
||||
bst.predict(dtrain)
|
||||
|
||||
@ -389,6 +397,7 @@ class TestDMatrix:
|
||||
xgb.DMatrix(d)
|
||||
|
||||
from scipy import sparse
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
X = rng.rand(10, 10)
|
||||
y = rng.rand(10)
|
||||
@ -402,7 +411,7 @@ class TestDMatrix:
|
||||
n_features = 10
|
||||
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
|
||||
X = X.values.astype(np.float32)
|
||||
feature_types = ['c'] * n_features
|
||||
feature_types = ["c"] * n_features
|
||||
|
||||
assert isinstance(X, np.ndarray)
|
||||
Xy = xgb.DMatrix(X, y, feature_types=feature_types)
|
||||
@ -410,10 +419,11 @@ class TestDMatrix:
|
||||
|
||||
def test_scipy_categorical(self):
|
||||
from scipy import sparse
|
||||
|
||||
n_features = 10
|
||||
X, y = tm.make_categorical(10, n_features, n_categories=4, onehot=False)
|
||||
X = X.values.astype(np.float32)
|
||||
feature_types = ['c'] * n_features
|
||||
feature_types = ["c"] * n_features
|
||||
|
||||
X[1, 3] = np.NAN
|
||||
X[2, 4] = np.NAN
|
||||
@ -433,7 +443,7 @@ class TestDMatrix:
|
||||
np.testing.assert_equal(np.array(Xy.feature_types), np.array(feature_types))
|
||||
|
||||
def test_uri_categorical(self):
|
||||
path = os.path.join(dpath, 'agaricus.txt.train')
|
||||
path = os.path.join(dpath, "agaricus.txt.train")
|
||||
feature_types = ["q"] * 5 + ["c"] + ["q"] * 120
|
||||
Xy = xgb.DMatrix(
|
||||
path + "?indexing_mode=1&format=libsvm", feature_types=feature_types
|
||||
@ -471,6 +481,7 @@ class TestDMatrix:
|
||||
assert tm.predictor_equal(m0, m1)
|
||||
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
class TestDMatrixColumnSplit:
|
||||
def test_numpy(self):
|
||||
def verify_numpy():
|
||||
@ -487,14 +498,22 @@ class TestDMatrixColumnSplit:
|
||||
def verify_numpy_feature_names():
|
||||
world_size = xgb.collective.get_world_size()
|
||||
data = np.random.randn(5, 5)
|
||||
feature_names = [f'feature{x}' for x in range(5)]
|
||||
feature_types = ['float'] * 5
|
||||
dm = xgb.DMatrix(data, feature_names=feature_names, feature_types=feature_types,
|
||||
data_split_mode=DataSplitMode.COL)
|
||||
feature_names = [f"feature{x}" for x in range(5)]
|
||||
feature_types = ["float"] * 5
|
||||
dm = xgb.DMatrix(
|
||||
data,
|
||||
feature_names=feature_names,
|
||||
feature_types=feature_types,
|
||||
data_split_mode=DataSplitMode.COL,
|
||||
)
|
||||
assert dm.num_row() == 5
|
||||
assert dm.num_col() == 5 * world_size
|
||||
assert len(dm.feature_names) == 5 * world_size
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
feature_names, world_size
|
||||
)
|
||||
assert len(dm.feature_types) == 5 * world_size
|
||||
assert dm.feature_types == ["float"] * 5 * world_size
|
||||
|
||||
tm.run_with_rabit(world_size=3, test_fn=verify_numpy_feature_names)
|
||||
|
||||
@ -534,6 +553,23 @@ class TestDMatrixColumnSplit:
|
||||
|
||||
tm.run_with_rabit(world_size=3, test_fn=verify_coo)
|
||||
|
||||
def test_uri(self):
|
||||
def verify_uri():
|
||||
rank = xgb.collective.get_rank()
|
||||
data = np.random.rand(5, 5)
|
||||
filename = f"test_data_{rank}.csv"
|
||||
with open(filename, mode="w", newline="") as file:
|
||||
writer = csv.writer(file)
|
||||
for row in data:
|
||||
writer.writerow(row)
|
||||
dtrain = xgb.DMatrix(
|
||||
f"{filename}?format=csv", data_split_mode=DataSplitMode.COL
|
||||
)
|
||||
assert dtrain.num_row() == 5
|
||||
assert dtrain.num_col() == 5 * xgb.collective.get_world_size()
|
||||
|
||||
tm.run_with_rabit(world_size=3, test_fn=verify_uri)
|
||||
|
||||
def test_list(self):
|
||||
def verify_list():
|
||||
data = [
|
||||
@ -541,7 +577,7 @@ class TestDMatrixColumnSplit:
|
||||
[6, 7, 8, 9, 10],
|
||||
[11, 12, 13, 14, 15],
|
||||
[16, 17, 18, 19, 20],
|
||||
[21, 22, 23, 24, 25]
|
||||
[21, 22, 23, 24, 25],
|
||||
]
|
||||
dm = xgb.DMatrix(data, data_split_mode=DataSplitMode.COL)
|
||||
assert dm.num_row() == 5
|
||||
@ -556,7 +592,7 @@ class TestDMatrixColumnSplit:
|
||||
(6, 7, 8, 9, 10),
|
||||
(11, 12, 13, 14, 15),
|
||||
(16, 17, 18, 19, 20),
|
||||
(21, 22, 23, 24, 25)
|
||||
(21, 22, 23, 24, 25),
|
||||
)
|
||||
dm = xgb.DMatrix(data, data_split_mode=DataSplitMode.COL)
|
||||
assert dm.num_row() == 5
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
@ -101,6 +100,7 @@ class TestArrowTable:
|
||||
np.testing.assert_equal(y_np_low, y_lower_bound.to_pandas().values)
|
||||
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
class TestArrowTableColumnSplit:
|
||||
def test_arrow_table(self):
|
||||
def verify_arrow_table():
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import sys
|
||||
from typing import Type
|
||||
|
||||
import numpy as np
|
||||
@ -6,6 +7,7 @@ from test_dmatrix import set_base_margin_info
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
from xgboost.core import DataSplitMode
|
||||
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes
|
||||
|
||||
try:
|
||||
@ -17,114 +19,194 @@ except ImportError:
|
||||
pytestmark = pytest.mark.skipif(**tm.no_pandas())
|
||||
|
||||
|
||||
dpath = 'demo/data/'
|
||||
dpath = "demo/data/"
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestPandas:
|
||||
def test_pandas(self):
|
||||
df = pd.DataFrame([[1, 2., True], [2, 3., False]],
|
||||
columns=['a', 'b', 'c'])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
||||
assert dm.feature_names == ['a', 'b', 'c']
|
||||
assert dm.feature_types == ['int', 'float', 'i']
|
||||
def test_pandas(self, data_split_mode=DataSplitMode.ROW):
|
||||
world_size = xgb.collective.get_world_size()
|
||||
df = pd.DataFrame([[1, 2.0, True], [2, 3.0, False]], columns=["a", "b", "c"])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]), data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 2
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["a", "b", "c"]
|
||||
assert dm.feature_types == ["int", "float", "i"]
|
||||
assert dm.num_col() == 3
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["a", "b", "c"], world_size
|
||||
)
|
||||
assert dm.feature_types == ["int", "float", "i"] * world_size
|
||||
assert dm.num_col() == 3 * world_size
|
||||
np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))
|
||||
|
||||
# overwrite feature_names and feature_types
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]),
|
||||
feature_names=['x', 'y', 'z'],
|
||||
feature_types=['q', 'q', 'q'])
|
||||
assert dm.feature_names == ['x', 'y', 'z']
|
||||
assert dm.feature_types == ['q', 'q', 'q']
|
||||
dm = xgb.DMatrix(
|
||||
df,
|
||||
label=pd.Series([1, 2]),
|
||||
feature_names=["x", "y", "z"],
|
||||
feature_types=["q", "q", "q"],
|
||||
data_split_mode=data_split_mode,
|
||||
)
|
||||
assert dm.num_row() == 2
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["x", "y", "z"]
|
||||
assert dm.feature_types == ["q", "q", "q"]
|
||||
assert dm.num_col() == 3
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["x", "y", "z"], world_size
|
||||
)
|
||||
assert dm.feature_types == ["q", "q", "q"] * world_size
|
||||
assert dm.num_col() == 3 * world_size
|
||||
|
||||
# incorrect dtypes
|
||||
df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']],
|
||||
columns=['a', 'b', 'c'])
|
||||
df = pd.DataFrame([[1, 2.0, "x"], [2, 3.0, "y"]], columns=["a", "b", "c"])
|
||||
with pytest.raises(ValueError):
|
||||
xgb.DMatrix(df)
|
||||
xgb.DMatrix(df, data_split_mode=data_split_mode)
|
||||
|
||||
# numeric columns
|
||||
df = pd.DataFrame([[1, 2., True], [2, 3., False]])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
||||
assert dm.feature_names == ['0', '1', '2']
|
||||
assert dm.feature_types == ['int', 'float', 'i']
|
||||
df = pd.DataFrame([[1, 2.0, True], [2, 3.0, False]])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]), data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 2
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["0", "1", "2"]
|
||||
assert dm.feature_types == ["int", "float", "i"]
|
||||
assert dm.num_col() == 3
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["0", "1", "2"], world_size
|
||||
)
|
||||
assert dm.feature_types == ["int", "float", "i"] * world_size
|
||||
assert dm.num_col() == 3 * world_size
|
||||
np.testing.assert_array_equal(dm.get_label(), np.array([1, 2]))
|
||||
|
||||
df = pd.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
|
||||
assert dm.feature_names == ['4', '5', '6']
|
||||
assert dm.feature_types == ['int', 'float', 'int']
|
||||
df = pd.DataFrame([[1, 2.0, 1], [2, 3.0, 1]], columns=[4, 5, 6])
|
||||
dm = xgb.DMatrix(df, label=pd.Series([1, 2]), data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 2
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["4", "5", "6"]
|
||||
assert dm.feature_types == ["int", "float", "int"]
|
||||
assert dm.num_col() == 3
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["4", "5", "6"], world_size
|
||||
)
|
||||
assert dm.feature_types == ["int", "float", "int"] * world_size
|
||||
assert dm.num_col() == 3 * world_size
|
||||
|
||||
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
|
||||
df = pd.DataFrame({"A": ["X", "Y", "Z"], "B": [1, 2, 3]})
|
||||
dummies = pd.get_dummies(df)
|
||||
# B A_X A_Y A_Z
|
||||
# 0 1 1 0 0
|
||||
# 1 2 0 1 0
|
||||
# 2 3 0 0 1
|
||||
result, _, _ = xgb.data._transform_pandas_df(dummies,
|
||||
enable_categorical=False)
|
||||
exp = np.array([[1., 1., 0., 0.],
|
||||
[2., 0., 1., 0.],
|
||||
[3., 0., 0., 1.]])
|
||||
result, _, _ = xgb.data._transform_pandas_df(dummies, enable_categorical=False)
|
||||
exp = np.array(
|
||||
[[1.0, 1.0, 0.0, 0.0], [2.0, 0.0, 1.0, 0.0], [3.0, 0.0, 0.0, 1.0]]
|
||||
)
|
||||
np.testing.assert_array_equal(result, exp)
|
||||
dm = xgb.DMatrix(dummies)
|
||||
assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z']
|
||||
dm = xgb.DMatrix(dummies, data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 3
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["B", "A_X", "A_Y", "A_Z"]
|
||||
if int(pd.__version__[0]) >= 2:
|
||||
assert dm.feature_types == ['int', 'i', 'i', 'i']
|
||||
assert dm.feature_types == ["int", "i", "i", "i"]
|
||||
else:
|
||||
assert dm.feature_types == ['int', 'int', 'int', 'int']
|
||||
assert dm.num_row() == 3
|
||||
assert dm.feature_types == ["int", "int", "int", "int"]
|
||||
assert dm.num_col() == 4
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["B", "A_X", "A_Y", "A_Z"], world_size
|
||||
)
|
||||
if int(pd.__version__[0]) >= 2:
|
||||
assert dm.feature_types == ["int", "i", "i", "i"] * world_size
|
||||
else:
|
||||
assert dm.feature_types == ["int", "int", "int", "int"] * world_size
|
||||
assert dm.num_col() == 4 * world_size
|
||||
|
||||
df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]})
|
||||
dm = xgb.DMatrix(df)
|
||||
assert dm.feature_names == ['A=1', 'A=2']
|
||||
assert dm.feature_types == ['int', 'int']
|
||||
df = pd.DataFrame({"A=1": [1, 2, 3], "A=2": [4, 5, 6]})
|
||||
dm = xgb.DMatrix(df, data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 3
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["A=1", "A=2"]
|
||||
assert dm.feature_types == ["int", "int"]
|
||||
assert dm.num_col() == 2
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["A=1", "A=2"], world_size
|
||||
)
|
||||
assert dm.feature_types == ["int", "int"] * world_size
|
||||
assert dm.num_col() == 2 * world_size
|
||||
|
||||
df_int = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=[9, 10])
|
||||
dm_int = xgb.DMatrix(df_int)
|
||||
dm_int = xgb.DMatrix(df_int, data_split_mode=data_split_mode)
|
||||
df_range = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=range(9, 11, 1))
|
||||
dm_range = xgb.DMatrix(df_range)
|
||||
assert dm_int.feature_names == ['9', '10'] # assert not "9 "
|
||||
dm_range = xgb.DMatrix(df_range, data_split_mode=data_split_mode)
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm_int.feature_names == ["9", "10"] # assert not "9 "
|
||||
else:
|
||||
assert dm_int.feature_names == tm.column_split_feature_names(
|
||||
["9", "10"], world_size
|
||||
)
|
||||
assert dm_int.feature_names == dm_range.feature_names
|
||||
|
||||
# test MultiIndex as columns
|
||||
df = pd.DataFrame(
|
||||
[
|
||||
(1, 2, 3, 4, 5, 6),
|
||||
(6, 5, 4, 3, 2, 1)
|
||||
],
|
||||
columns=pd.MultiIndex.from_tuples((
|
||||
('a', 1), ('a', 2), ('a', 3),
|
||||
('b', 1), ('b', 2), ('b', 3),
|
||||
))
|
||||
[(1, 2, 3, 4, 5, 6), (6, 5, 4, 3, 2, 1)],
|
||||
columns=pd.MultiIndex.from_tuples(
|
||||
(
|
||||
("a", 1),
|
||||
("a", 2),
|
||||
("a", 3),
|
||||
("b", 1),
|
||||
("b", 2),
|
||||
("b", 3),
|
||||
)
|
||||
dm = xgb.DMatrix(df)
|
||||
assert dm.feature_names == ['a 1', 'a 2', 'a 3', 'b 1', 'b 2', 'b 3']
|
||||
assert dm.feature_types == ['int', 'int', 'int', 'int', 'int', 'int']
|
||||
),
|
||||
)
|
||||
dm = xgb.DMatrix(df, data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 2
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.feature_names == ["a 1", "a 2", "a 3", "b 1", "b 2", "b 3"]
|
||||
assert dm.feature_types == ["int", "int", "int", "int", "int", "int"]
|
||||
assert dm.num_col() == 6
|
||||
else:
|
||||
assert dm.feature_names == tm.column_split_feature_names(
|
||||
["a 1", "a 2", "a 3", "b 1", "b 2", "b 3"], world_size
|
||||
)
|
||||
assert (
|
||||
dm.feature_types
|
||||
== ["int", "int", "int", "int", "int", "int"] * world_size
|
||||
)
|
||||
assert dm.num_col() == 6 * world_size
|
||||
|
||||
# test Index as columns
|
||||
df = pd.DataFrame([[1, 1.1], [2, 2.2]], columns=pd.Index([1, 2]))
|
||||
Xy = xgb.DMatrix(df)
|
||||
Xy = xgb.DMatrix(df, data_split_mode=data_split_mode)
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
np.testing.assert_equal(np.array(Xy.feature_names), np.array(["1", "2"]))
|
||||
else:
|
||||
np.testing.assert_equal(
|
||||
np.array(Xy.feature_names),
|
||||
np.array(tm.column_split_feature_names(["1", "2"], world_size)),
|
||||
)
|
||||
|
||||
# test pandas series
|
||||
data_series = pd.Series([1, 2, 3, 4, 5])
|
||||
dm = xgb.DMatrix(data_series, data_split_mode=data_split_mode)
|
||||
assert dm.num_row() == 5
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.num_col() == 1
|
||||
else:
|
||||
assert dm.num_col() == 1 * world_size
|
||||
|
||||
def test_slice(self):
|
||||
rng = np.random.RandomState(1994)
|
||||
rows = 100
|
||||
X = rng.randint(3, 7, size=rows)
|
||||
X = pd.DataFrame({'f0': X})
|
||||
X = pd.DataFrame({"f0": X})
|
||||
y = rng.randn(rows)
|
||||
ridxs = [1, 2, 3, 4, 5, 6]
|
||||
m = xgb.DMatrix(X, y)
|
||||
@ -132,15 +214,16 @@ class TestPandas:
|
||||
|
||||
assert m.feature_types == sliced.feature_types
|
||||
|
||||
def test_pandas_categorical(self):
|
||||
def test_pandas_categorical(self, data_split_mode=DataSplitMode.ROW):
|
||||
world_size = xgb.collective.get_world_size()
|
||||
rng = np.random.RandomState(1994)
|
||||
rows = 100
|
||||
X = rng.randint(3, 7, size=rows)
|
||||
X = pd.Series(X, dtype="category")
|
||||
X = pd.DataFrame({'f0': X})
|
||||
X = pd.DataFrame({"f0": X})
|
||||
y = rng.randn(rows)
|
||||
m = xgb.DMatrix(X, y, enable_categorical=True)
|
||||
assert m.feature_types[0] == 'c'
|
||||
m = xgb.DMatrix(X, y, enable_categorical=True, data_split_mode=data_split_mode)
|
||||
assert m.feature_types[0] == "c"
|
||||
|
||||
X_0 = ["f", "o", "o"]
|
||||
X_1 = [4, 3, 2]
|
||||
@ -159,22 +242,29 @@ class TestPandas:
|
||||
assert not np.any(arr == -1.0)
|
||||
|
||||
X = X["f0"]
|
||||
y = y[:X.shape[0]]
|
||||
y = y[: X.shape[0]]
|
||||
with pytest.raises(ValueError, match=r".*enable_categorical.*"):
|
||||
xgb.DMatrix(X, y)
|
||||
xgb.DMatrix(X, y, data_split_mode=data_split_mode)
|
||||
|
||||
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
||||
Xy = xgb.DMatrix(X, y, enable_categorical=True, data_split_mode=data_split_mode)
|
||||
assert Xy.num_row() == 3
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert Xy.num_col() == 1
|
||||
else:
|
||||
assert Xy.num_col() == 1 * world_size
|
||||
|
||||
def test_pandas_sparse(self):
|
||||
import pandas as pd
|
||||
|
||||
rows = 100
|
||||
X = pd.DataFrame(
|
||||
{"A": pd.arrays.SparseArray(np.random.randint(0, 10, size=rows)),
|
||||
{
|
||||
"A": pd.arrays.SparseArray(np.random.randint(0, 10, size=rows)),
|
||||
"B": pd.arrays.SparseArray(np.random.randn(rows)),
|
||||
"C": pd.arrays.SparseArray(np.random.permutation(
|
||||
[True, False] * (rows // 2)))}
|
||||
"C": pd.arrays.SparseArray(
|
||||
np.random.permutation([True, False] * (rows // 2))
|
||||
),
|
||||
}
|
||||
)
|
||||
y = pd.Series(pd.arrays.SparseArray(np.random.randn(rows)))
|
||||
dtrain = xgb.DMatrix(X, y)
|
||||
@ -183,27 +273,36 @@ class TestPandas:
|
||||
predt_dense = booster.predict(xgb.DMatrix(X.sparse.to_dense()))
|
||||
np.testing.assert_allclose(predt_sparse, predt_dense)
|
||||
|
||||
def test_pandas_label(self):
|
||||
def test_pandas_label(self, data_split_mode=DataSplitMode.ROW):
|
||||
world_size = xgb.collective.get_world_size()
|
||||
# label must be a single column
|
||||
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
|
||||
df = pd.DataFrame({"A": ["X", "Y", "Z"], "B": [1, 2, 3]})
|
||||
with pytest.raises(ValueError):
|
||||
xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float')
|
||||
xgb.data._transform_pandas_df(df, False, None, None, "label", "float")
|
||||
|
||||
# label must be supported dtype
|
||||
df = pd.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)})
|
||||
df = pd.DataFrame({"A": np.array(["a", "b", "c"], dtype=object)})
|
||||
with pytest.raises(ValueError):
|
||||
xgb.data._transform_pandas_df(df, False, None, None, 'label', 'float')
|
||||
xgb.data._transform_pandas_df(df, False, None, None, "label", "float")
|
||||
|
||||
df = pd.DataFrame({'A': np.array([1, 2, 3], dtype=int)})
|
||||
result, _, _ = xgb.data._transform_pandas_df(df, False, None, None,
|
||||
'label', 'float')
|
||||
np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]],
|
||||
dtype=float))
|
||||
dm = xgb.DMatrix(np.random.randn(3, 2), label=df)
|
||||
df = pd.DataFrame({"A": np.array([1, 2, 3], dtype=int)})
|
||||
result, _, _ = xgb.data._transform_pandas_df(
|
||||
df, False, None, None, "label", "float"
|
||||
)
|
||||
np.testing.assert_array_equal(
|
||||
result, np.array([[1.0], [2.0], [3.0]], dtype=float)
|
||||
)
|
||||
dm = xgb.DMatrix(
|
||||
np.random.randn(3, 2), label=df, data_split_mode=data_split_mode
|
||||
)
|
||||
assert dm.num_row() == 3
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert dm.num_col() == 2
|
||||
else:
|
||||
assert dm.num_col() == 2 * world_size
|
||||
|
||||
def test_pandas_weight(self):
|
||||
def test_pandas_weight(self, data_split_mode=DataSplitMode.ROW):
|
||||
world_size = xgb.collective.get_world_size()
|
||||
kRows = 32
|
||||
kCols = 8
|
||||
|
||||
@ -211,11 +310,13 @@ class TestPandas:
|
||||
y = np.random.randn(kRows)
|
||||
w = np.random.uniform(size=kRows).astype(np.float32)
|
||||
w_pd = pd.DataFrame(w)
|
||||
data = xgb.DMatrix(X, y, weight=w_pd)
|
||||
data = xgb.DMatrix(X, y, weight=w_pd, data_split_mode=data_split_mode)
|
||||
|
||||
assert data.num_row() == kRows
|
||||
if data_split_mode == DataSplitMode.ROW:
|
||||
assert data.num_col() == kCols
|
||||
|
||||
else:
|
||||
assert data.num_col() == kCols * world_size
|
||||
np.testing.assert_array_equal(data.get_weight(), w)
|
||||
|
||||
def test_base_margin(self):
|
||||
@ -223,81 +324,128 @@ class TestPandas:
|
||||
|
||||
def test_cv_as_pandas(self):
|
||||
dm, _ = tm.load_agaricus(__file__)
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic', 'eval_metric': 'error'}
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
"eval_metric": "error",
|
||||
}
|
||||
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10)
|
||||
assert isinstance(cv, pd.DataFrame)
|
||||
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
||||
u'train-error-mean', u'train-error-std'])
|
||||
exp = pd.Index(
|
||||
["test-error-mean", "test-error-std", "train-error-mean", "train-error-std"]
|
||||
)
|
||||
assert len(cv.columns.intersection(exp)) == 4
|
||||
|
||||
# show progress log (result is the same as above)
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
verbose_eval=True)
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, verbose_eval=True)
|
||||
assert isinstance(cv, pd.DataFrame)
|
||||
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
||||
u'train-error-mean', u'train-error-std'])
|
||||
exp = pd.Index(
|
||||
["test-error-mean", "test-error-std", "train-error-mean", "train-error-std"]
|
||||
)
|
||||
assert len(cv.columns.intersection(exp)) == 4
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
verbose_eval=True, show_stdv=False)
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, verbose_eval=True, show_stdv=False
|
||||
)
|
||||
assert isinstance(cv, pd.DataFrame)
|
||||
exp = pd.Index([u'test-error-mean', u'test-error-std',
|
||||
u'train-error-mean', u'train-error-std'])
|
||||
exp = pd.Index(
|
||||
["test-error-mean", "test-error-std", "train-error-mean", "train-error-std"]
|
||||
)
|
||||
assert len(cv.columns.intersection(exp)) == 4
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic', 'eval_metric': 'auc'}
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
"eval_metric": "auc",
|
||||
}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
|
||||
assert 'eval_metric' in params
|
||||
assert 'auc' in cv.columns[0]
|
||||
assert "eval_metric" in params
|
||||
assert "auc" in cv.columns[0]
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
"eval_metric": ["auc"],
|
||||
}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
|
||||
assert 'eval_metric' in params
|
||||
assert 'auc' in cv.columns[0]
|
||||
assert "eval_metric" in params
|
||||
assert "auc" in cv.columns[0]
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, early_stopping_rounds=1)
|
||||
assert 'eval_metric' in params
|
||||
assert 'auc' in cv.columns[0]
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
"eval_metric": ["auc"],
|
||||
}
|
||||
cv = xgb.cv(
|
||||
params,
|
||||
dm,
|
||||
num_boost_round=10,
|
||||
nfold=10,
|
||||
as_pandas=True,
|
||||
early_stopping_rounds=1,
|
||||
)
|
||||
assert "eval_metric" in params
|
||||
assert "auc" in cv.columns[0]
|
||||
assert cv.shape[0] < 10
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic'}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, metrics='auc')
|
||||
assert 'auc' in cv.columns[0]
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
}
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics="auc"
|
||||
)
|
||||
assert "auc" in cv.columns[0]
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic'}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, metrics=['auc'])
|
||||
assert 'auc' in cv.columns[0]
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
}
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=["auc"]
|
||||
)
|
||||
assert "auc" in cv.columns[0]
|
||||
|
||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
||||
'objective': 'binary:logistic', 'eval_metric': ['auc']}
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, metrics='error')
|
||||
assert 'eval_metric' in params
|
||||
assert 'auc' not in cv.columns[0]
|
||||
assert 'error' in cv.columns[0]
|
||||
params = {
|
||||
"max_depth": 2,
|
||||
"eta": 1,
|
||||
"verbosity": 0,
|
||||
"objective": "binary:logistic",
|
||||
"eval_metric": ["auc"],
|
||||
}
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics="error"
|
||||
)
|
||||
assert "eval_metric" in params
|
||||
assert "auc" not in cv.columns[0]
|
||||
assert "error" in cv.columns[0]
|
||||
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, metrics=['error'])
|
||||
assert 'eval_metric' in params
|
||||
assert 'auc' not in cv.columns[0]
|
||||
assert 'error' in cv.columns[0]
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=["error"]
|
||||
)
|
||||
assert "eval_metric" in params
|
||||
assert "auc" not in cv.columns[0]
|
||||
assert "error" in cv.columns[0]
|
||||
|
||||
params = list(params.items())
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||
as_pandas=True, metrics=['error'])
|
||||
cv = xgb.cv(
|
||||
params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=["error"]
|
||||
)
|
||||
assert isinstance(params, list)
|
||||
assert 'auc' not in cv.columns[0]
|
||||
assert 'error' in cv.columns[0]
|
||||
assert "auc" not in cv.columns[0]
|
||||
assert "error" in cv.columns[0]
|
||||
|
||||
@pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix])
|
||||
def test_nullable_type(self, DMatrixT) -> None:
|
||||
@ -358,3 +506,60 @@ class TestPandas:
|
||||
if y is not None:
|
||||
np.testing.assert_allclose(m_orig.get_label(), m_etype.get_label())
|
||||
np.testing.assert_allclose(m_etype.get_label(), y.values)
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
def test_pandas_column_split(self):
|
||||
tm.run_with_rabit(
|
||||
world_size=3, test_fn=self.test_pandas, data_split_mode=DataSplitMode.COL
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
def test_pandas_categorical_column_split(self):
|
||||
tm.run_with_rabit(
|
||||
world_size=3,
|
||||
test_fn=self.test_pandas_categorical,
|
||||
data_split_mode=DataSplitMode.COL,
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
def test_pandas_sparse_column_split(self):
|
||||
rows = 100
|
||||
X = pd.DataFrame(
|
||||
{
|
||||
"A": pd.arrays.SparseArray(np.random.randint(0, 10, size=rows)),
|
||||
"B": pd.arrays.SparseArray(np.random.randn(rows)),
|
||||
"C": pd.arrays.SparseArray(
|
||||
np.random.permutation([True, False] * (rows // 2))
|
||||
),
|
||||
}
|
||||
)
|
||||
y = pd.Series(pd.arrays.SparseArray(np.random.randn(rows)))
|
||||
|
||||
def verify_pandas_sparse():
|
||||
dtrain = xgb.DMatrix(X, y, data_split_mode=DataSplitMode.COL)
|
||||
booster = xgb.train({}, dtrain, num_boost_round=4)
|
||||
predt_sparse = booster.predict(
|
||||
xgb.DMatrix(X, data_split_mode=DataSplitMode.COL)
|
||||
)
|
||||
predt_dense = booster.predict(
|
||||
xgb.DMatrix(X.sparse.to_dense(), data_split_mode=DataSplitMode.COL)
|
||||
)
|
||||
np.testing.assert_allclose(predt_sparse, predt_dense)
|
||||
|
||||
tm.run_with_rabit(world_size=3, test_fn=verify_pandas_sparse)
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
def test_pandas_label_column_split(self):
|
||||
tm.run_with_rabit(
|
||||
world_size=3,
|
||||
test_fn=self.test_pandas_label,
|
||||
data_split_mode=DataSplitMode.COL,
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows")
|
||||
def test_pandas_weight_column_split(self):
|
||||
tm.run_with_rabit(
|
||||
world_size=3,
|
||||
test_fn=self.test_pandas_weight,
|
||||
data_split_mode=DataSplitMode.COL,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user