Move device histogram storage into histogram.cuh. (#10608)

This commit is contained in:
Jiaming Yuan 2024-07-21 14:10:13 +08:00 committed by GitHub
parent cb62f9e73b
commit 6d9fcb771e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 171 additions and 167 deletions

View File

@ -6,6 +6,8 @@
#include <memory> // for unique_ptr #include <memory> // for unique_ptr
#include "../../common/cuda_context.cuh" // for CUDAContext #include "../../common/cuda_context.cuh" // for CUDAContext
#include "../../common/device_helpers.cuh" // for LaunchN
#include "../../common/device_vector.cuh" // for device_vector
#include "../../data/ellpack_page.cuh" // for EllpackDeviceAccessor #include "../../data/ellpack_page.cuh" // for EllpackDeviceAccessor
#include "feature_groups.cuh" // for FeatureGroupsAccessor #include "feature_groups.cuh" // for FeatureGroupsAccessor
#include "xgboost/base.h" // for GradientPair, GradientPairInt64 #include "xgboost/base.h" // for GradientPair, GradientPairInt64
@ -60,6 +62,111 @@ class GradientQuantiser {
} }
}; };
/**
* @brief Data storage for node histograms on device. Automatically expands.
*
* @tparam kStopGrowingSize Do not grow beyond this size
*
* @author Rory
* @date 28/07/2018
*/
template <size_t kStopGrowingSize = 1 << 28>
class DeviceHistogramStorage {
private:
using GradientSumT = GradientPairInt64;
/** @brief Map nidx to starting index of its histogram. */
std::map<int, size_t> nidx_map_;
// Large buffer of zeroed memory, caches histograms
dh::device_vector<typename GradientSumT::ValueT> data_;
// If we run out of storage allocate one histogram at a time
// in overflow. Not cached, overwritten when a new histogram
// is requested
dh::device_vector<typename GradientSumT::ValueT> overflow_;
std::map<int, size_t> overflow_nidx_map_;
int n_bins_;
DeviceOrd device_id_;
static constexpr size_t kNumItemsInGradientSum =
sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT);
static_assert(kNumItemsInGradientSum == 2, "Number of items in gradient type should be 2.");
public:
// Start with about 16mb
DeviceHistogramStorage() { data_.reserve(1 << 22); }
void Init(DeviceOrd device_id, int n_bins) {
this->n_bins_ = n_bins;
this->device_id_ = device_id;
}
void Reset(Context const* ctx) {
auto d_data = data_.data().get();
dh::LaunchN(data_.size(), ctx->CUDACtx()->Stream(),
[=] __device__(size_t idx) { d_data[idx] = 0.0f; });
nidx_map_.clear();
overflow_nidx_map_.clear();
}
[[nodiscard]] bool HistogramExists(int nidx) const {
return nidx_map_.find(nidx) != nidx_map_.cend() ||
overflow_nidx_map_.find(nidx) != overflow_nidx_map_.cend();
}
[[nodiscard]] int Bins() const { return n_bins_; }
[[nodiscard]] size_t HistogramSize() const { return n_bins_ * kNumItemsInGradientSum; }
dh::device_vector<typename GradientSumT::ValueT>& Data() { return data_; }
void AllocateHistograms(Context const* ctx, const std::vector<int>& new_nidxs) {
for (int nidx : new_nidxs) {
CHECK(!HistogramExists(nidx));
}
// Number of items currently used in data
const size_t used_size = nidx_map_.size() * HistogramSize();
const size_t new_used_size = used_size + HistogramSize() * new_nidxs.size();
if (used_size >= kStopGrowingSize) {
// Use overflow
// Delete previous entries
overflow_nidx_map_.clear();
overflow_.resize(HistogramSize() * new_nidxs.size());
// Zero memory
auto d_data = overflow_.data().get();
dh::LaunchN(overflow_.size(), ctx->CUDACtx()->Stream(),
[=] __device__(size_t idx) { d_data[idx] = 0.0; });
// Append new histograms
for (int nidx : new_nidxs) {
overflow_nidx_map_[nidx] = overflow_nidx_map_.size() * HistogramSize();
}
} else {
CHECK_GE(data_.size(), used_size);
// Expand if necessary
if (data_.size() < new_used_size) {
data_.resize(std::max(data_.size() * 2, new_used_size));
}
// Append new histograms
for (int nidx : new_nidxs) {
nidx_map_[nidx] = nidx_map_.size() * HistogramSize();
}
}
CHECK_GE(data_.size(), nidx_map_.size() * HistogramSize());
}
/**
* \summary Return pointer to histogram memory for a given node.
* \param nidx Tree node index.
* \return hist pointer.
*/
common::Span<GradientSumT> GetNodeHistogram(int nidx) {
CHECK(this->HistogramExists(nidx));
if (nidx_map_.find(nidx) != nidx_map_.cend()) {
// Fetch from normal cache
auto ptr = data_.data().get() + nidx_map_.at(nidx);
return {reinterpret_cast<GradientSumT*>(ptr), static_cast<std::size_t>(n_bins_)};
} else {
// Fetch from overflow
auto ptr = overflow_.data().get() + overflow_nidx_map_.at(nidx);
return {reinterpret_cast<GradientSumT*>(ptr), static_cast<std::size_t>(n_bins_)};
}
}
};
class DeviceHistogramBuilderImpl; class DeviceHistogramBuilderImpl;
class DeviceHistogramBuilder { class DeviceHistogramBuilder {

View File

@ -49,113 +49,6 @@ namespace xgboost::tree {
DMLC_REGISTRY_FILE_TAG(updater_gpu_hist); DMLC_REGISTRY_FILE_TAG(updater_gpu_hist);
#endif // !defined(GTEST_TEST) #endif // !defined(GTEST_TEST)
/**
* \struct DeviceHistogramStorage
*
* \summary Data storage for node histograms on device. Automatically expands.
*
* \tparam GradientSumT histogram entry type.
* \tparam kStopGrowingSize Do not grow beyond this size
*
* \author Rory
* \date 28/07/2018
*/
template <size_t kStopGrowingSize = 1 << 28>
class DeviceHistogramStorage {
private:
using GradientSumT = GradientPairInt64;
/*! \brief Map nidx to starting index of its histogram. */
std::map<int, size_t> nidx_map_;
// Large buffer of zeroed memory, caches histograms
dh::device_vector<typename GradientSumT::ValueT> data_;
// If we run out of storage allocate one histogram at a time
// in overflow. Not cached, overwritten when a new histogram
// is requested
dh::device_vector<typename GradientSumT::ValueT> overflow_;
std::map<int, size_t> overflow_nidx_map_;
int n_bins_;
DeviceOrd device_id_;
static constexpr size_t kNumItemsInGradientSum =
sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT);
static_assert(kNumItemsInGradientSum == 2, "Number of items in gradient type should be 2.");
public:
// Start with about 16mb
DeviceHistogramStorage() { data_.reserve(1 << 22); }
void Init(DeviceOrd device_id, int n_bins) {
this->n_bins_ = n_bins;
this->device_id_ = device_id;
}
void Reset() {
auto d_data = data_.data().get();
dh::LaunchN(data_.size(), [=] __device__(size_t idx) { d_data[idx] = 0.0f; });
nidx_map_.clear();
overflow_nidx_map_.clear();
}
[[nodiscard]] bool HistogramExists(int nidx) const {
return nidx_map_.find(nidx) != nidx_map_.cend() ||
overflow_nidx_map_.find(nidx) != overflow_nidx_map_.cend();
}
[[nodiscard]] int Bins() const { return n_bins_; }
[[nodiscard]] size_t HistogramSize() const { return n_bins_ * kNumItemsInGradientSum; }
dh::device_vector<typename GradientSumT::ValueT>& Data() { return data_; }
void AllocateHistograms(const std::vector<int>& new_nidxs) {
for (int nidx : new_nidxs) {
CHECK(!HistogramExists(nidx));
}
// Number of items currently used in data
const size_t used_size = nidx_map_.size() * HistogramSize();
const size_t new_used_size = used_size + HistogramSize() * new_nidxs.size();
if (used_size >= kStopGrowingSize) {
// Use overflow
// Delete previous entries
overflow_nidx_map_.clear();
overflow_.resize(HistogramSize() * new_nidxs.size());
// Zero memory
auto d_data = overflow_.data().get();
dh::LaunchN(overflow_.size(),
[=] __device__(size_t idx) { d_data[idx] = 0.0; });
// Append new histograms
for (int nidx : new_nidxs) {
overflow_nidx_map_[nidx] = overflow_nidx_map_.size() * HistogramSize();
}
} else {
CHECK_GE(data_.size(), used_size);
// Expand if necessary
if (data_.size() < new_used_size) {
data_.resize(std::max(data_.size() * 2, new_used_size));
}
// Append new histograms
for (int nidx : new_nidxs) {
nidx_map_[nidx] = nidx_map_.size() * HistogramSize();
}
}
CHECK_GE(data_.size(), nidx_map_.size() * HistogramSize());
}
/**
* \summary Return pointer to histogram memory for a given node.
* \param nidx Tree node index.
* \return hist pointer.
*/
common::Span<GradientSumT> GetNodeHistogram(int nidx) {
CHECK(this->HistogramExists(nidx));
if (nidx_map_.find(nidx) != nidx_map_.cend()) {
// Fetch from normal cache
auto ptr = data_.data().get() + nidx_map_.at(nidx);
return {reinterpret_cast<GradientSumT*>(ptr), static_cast<std::size_t>(n_bins_)};
} else {
// Fetch from overflow
auto ptr = overflow_.data().get() + overflow_nidx_map_.at(nidx);
return {reinterpret_cast<GradientSumT*>(ptr), static_cast<std::size_t>(n_bins_)};
}
}
};
// Manage memory for a single GPU // Manage memory for a single GPU
struct GPUHistMakerDevice { struct GPUHistMakerDevice {
private: private:
@ -258,7 +151,7 @@ struct GPUHistMakerDevice {
// Init histogram // Init histogram
hist.Init(ctx_->Device(), page->Cuts().TotalBins()); hist.Init(ctx_->Device(), page->Cuts().TotalBins());
hist.Reset(); hist.Reset(ctx_);
this->InitFeatureGroupsOnce(); this->InitFeatureGroupsOnce();
@ -657,7 +550,7 @@ struct GPUHistMakerDevice {
all_new.insert(all_new.end(), subtraction_nidx.begin(), subtraction_nidx.end()); all_new.insert(all_new.end(), subtraction_nidx.begin(), subtraction_nidx.end());
// Allocate the histograms // Allocate the histograms
// Guaranteed contiguous memory // Guaranteed contiguous memory
hist.AllocateHistograms(all_new); hist.AllocateHistograms(ctx_, all_new);
for (auto nidx : hist_nidx) { for (auto nidx : hist_nidx) {
this->BuildHist(nidx); this->BuildHist(nidx);
@ -748,7 +641,7 @@ struct GPUHistMakerDevice {
ctx_, info_, linalg::MakeVec(reinterpret_cast<ReduceT*>(&root_sum_quantised), 2)); ctx_, info_, linalg::MakeVec(reinterpret_cast<ReduceT*>(&root_sum_quantised), 2));
collective::SafeColl(rc); collective::SafeColl(rc);
hist.AllocateHistograms({kRootNIdx}); hist.AllocateHistograms(ctx_, {kRootNIdx});
this->BuildHist(kRootNIdx); this->BuildHist(kRootNIdx);
this->AllReduceHist(kRootNIdx, 1); this->AllReduceHist(kRootNIdx, 1);

View File

@ -763,4 +763,6 @@ void DeleteRMMResource(RMMAllocator*) {}
RMMAllocatorPtr SetUpRMMResourceForCppTests(int, char**) { return {nullptr, DeleteRMMResource}; } RMMAllocatorPtr SetUpRMMResourceForCppTests(int, char**) { return {nullptr, DeleteRMMResource}; }
#endif // !defined(XGBOOST_USE_RMM) || XGBOOST_USE_RMM != 1 #endif // !defined(XGBOOST_USE_RMM) || XGBOOST_USE_RMM != 1
std::int32_t DistGpuIdx() { return common::AllVisibleGPUs() == 1 ? 0 : collective::GetRank(); }
} // namespace xgboost } // namespace xgboost

View File

@ -526,6 +526,9 @@ inline std::int32_t AllThreadsForTest() { return Context{}.Threads(); }
inline DeviceOrd FstCU() { return DeviceOrd::CUDA(0); } inline DeviceOrd FstCU() { return DeviceOrd::CUDA(0); }
// GPU device ordinal for distributed tests
std::int32_t DistGpuIdx();
inline auto GMockThrow(StringView msg) { inline auto GMockThrow(StringView msg) {
return ::testing::ThrowsMessage<dmlc::Error>(::testing::HasSubstr(msg)); return ::testing::ThrowsMessage<dmlc::Error>(::testing::HasSubstr(msg));
} }

View File

@ -14,6 +14,46 @@
#include "../../helpers.h" #include "../../helpers.h"
namespace xgboost::tree { namespace xgboost::tree {
TEST(Histogram, DeviceHistogramStorage) {
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
auto ctx = MakeCUDACtx(0);
constexpr size_t kNBins = 128;
constexpr int kNNodes = 4;
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
DeviceHistogramStorage<kStopGrowing> histogram;
histogram.Init(FstCU(), kNBins);
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms(&ctx, {i});
}
histogram.Reset(&ctx);
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
// Use allocated memory but do not erase nidx_map.
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms(&ctx, {i});
}
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Add two new nodes
histogram.AllocateHistograms(&ctx, {kNNodes});
histogram.AllocateHistograms(&ctx, {kNNodes + 1});
// Old cached nodes should still exist
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Should be deleted
ASSERT_FALSE(histogram.HistogramExists(kNNodes));
// Most recent node should exist
ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));
// Add same node again - should fail
EXPECT_ANY_THROW(histogram.AllocateHistograms(&ctx, {kNNodes + 1}););
}
void TestDeterministicHistogram(bool is_dense, int shm_size, bool force_global) { void TestDeterministicHistogram(bool is_dense, int shm_size, bool force_global) {
Context ctx = MakeCUDACtx(0); Context ctx = MakeCUDACtx(0);
size_t constexpr kBins = 256, kCols = 120, kRows = 16384, kRounds = 16; size_t constexpr kBins = 256, kCols = 120, kRows = 16384, kRounds = 16;

View File

@ -6,7 +6,6 @@
#include <thrust/host_vector.h> #include <thrust/host_vector.h>
#include <xgboost/base.h> #include <xgboost/base.h>
#include <random>
#include <string> #include <string>
#include <vector> #include <vector>
@ -23,46 +22,6 @@
#include "xgboost/json.h" #include "xgboost/json.h"
namespace xgboost::tree { namespace xgboost::tree {
TEST(GpuHist, DeviceHistogramStorage) {
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
dh::safe_cuda(cudaSetDevice(0));
constexpr size_t kNBins = 128;
constexpr int kNNodes = 4;
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
DeviceHistogramStorage<kStopGrowing> histogram;
histogram.Init(FstCU(), kNBins);
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms({i});
}
histogram.Reset();
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
// Use allocated memory but do not erase nidx_map.
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms({i});
}
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Add two new nodes
histogram.AllocateHistograms({kNNodes});
histogram.AllocateHistograms({kNNodes + 1});
// Old cached nodes should still exist
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Should be deleted
ASSERT_FALSE(histogram.HistogramExists(kNNodes));
// Most recent node should exist
ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));
// Add same node again - should fail
EXPECT_ANY_THROW(histogram.AllocateHistograms({kNNodes + 1}););
}
std::vector<GradientPairPrecise> GetHostHistGpair() { std::vector<GradientPairPrecise> GetHostHistGpair() {
// 24 bins, 3 bins for each feature (column). // 24 bins, 3 bins for each feature (column).
std::vector<GradientPairPrecise> hist_gpair = { std::vector<GradientPairPrecise> hist_gpair = {
@ -108,7 +67,7 @@ void TestBuildHist(bool use_shared_memory_histograms) {
maker.row_partitioner = std::make_unique<RowPartitioner>(&ctx, kNRows, 0); maker.row_partitioner = std::make_unique<RowPartitioner>(&ctx, kNRows, 0);
maker.hist.Init(ctx.Device(), page->Cuts().TotalBins()); maker.hist.Init(ctx.Device(), page->Cuts().TotalBins());
maker.hist.AllocateHistograms({0}); maker.hist.AllocateHistograms(&ctx, {0});
maker.gpair = gpair.DeviceSpan(); maker.gpair = gpair.DeviceSpan();
maker.quantiser = std::make_unique<GradientQuantiser>(&ctx, maker.gpair, MetaInfo()); maker.quantiser = std::make_unique<GradientQuantiser>(&ctx, maker.gpair, MetaInfo());
@ -425,8 +384,8 @@ TEST(GpuHist, MaxDepth) {
namespace { namespace {
RegTree GetHistTree(Context const* ctx, DMatrix* dmat) { RegTree GetHistTree(Context const* ctx, DMatrix* dmat) {
ObjInfo task{ObjInfo::kRegression}; ObjInfo task{ObjInfo::kRegression};
GPUHistMaker hist_maker{ctx, &task}; std::unique_ptr<TreeUpdater> hist_maker {TreeUpdater::Create("grow_gpu_hist", ctx, &task)};
hist_maker.Configure(Args{}); hist_maker->Configure(Args{});
TrainParam param; TrainParam param;
param.UpdateAllowUnknown(Args{}); param.UpdateAllowUnknown(Args{});
@ -436,7 +395,7 @@ RegTree GetHistTree(Context const* ctx, DMatrix* dmat) {
std::vector<HostDeviceVector<bst_node_t>> position(1); std::vector<HostDeviceVector<bst_node_t>> position(1);
RegTree tree; RegTree tree;
hist_maker.Update(&param, &gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position}, hist_maker->Update(&param, &gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position},
{&tree}); {&tree});
return tree; return tree;
} }
@ -476,8 +435,8 @@ TEST_F(MGPUHistTest, HistColumnSplit) {
namespace { namespace {
RegTree GetApproxTree(Context const* ctx, DMatrix* dmat) { RegTree GetApproxTree(Context const* ctx, DMatrix* dmat) {
ObjInfo task{ObjInfo::kRegression}; ObjInfo task{ObjInfo::kRegression};
GPUGlobalApproxMaker approx_maker{ctx, &task}; std::unique_ptr<TreeUpdater> approx_maker{TreeUpdater::Create("grow_gpu_approx", ctx, &task)};
approx_maker.Configure(Args{}); approx_maker->Configure(Args{});
TrainParam param; TrainParam param;
param.UpdateAllowUnknown(Args{}); param.UpdateAllowUnknown(Args{});
@ -487,13 +446,13 @@ RegTree GetApproxTree(Context const* ctx, DMatrix* dmat) {
std::vector<HostDeviceVector<bst_node_t>> position(1); std::vector<HostDeviceVector<bst_node_t>> position(1);
RegTree tree; RegTree tree;
approx_maker.Update(&param, &gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position}, approx_maker->Update(&param, &gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position},
{&tree}); {&tree});
return tree; return tree;
} }
void VerifyApproxColumnSplit(bst_idx_t rows, bst_feature_t cols, RegTree const& expected_tree) { void VerifyApproxColumnSplit(bst_idx_t rows, bst_feature_t cols, RegTree const& expected_tree) {
Context ctx(MakeCUDACtx(GPUIDX)); auto ctx = MakeCUDACtx(DistGpuIdx());
auto Xy = RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(true); auto Xy = RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(true);
auto const world_size = collective::GetWorldSize(); auto const world_size = collective::GetWorldSize();