python sklearn api: defaulting to best_ntree_limit if defined, otherwise current behaviour (#3445)
* python sklearn api: defaulting to best_ntree_limit if defined, otherwise current behaviour * Fix whitespace
This commit is contained in:
parent
cb017d0c9a
commit
6bed54ac39
@ -335,9 +335,13 @@ class XGBModel(XGBModelBase):
|
|||||||
self.best_ntree_limit = self._Booster.best_ntree_limit
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def predict(self, data, output_margin=False, ntree_limit=0):
|
def predict(self, data, output_margin=False, ntree_limit=None):
|
||||||
# pylint: disable=missing-docstring,invalid-name
|
# pylint: disable=missing-docstring,invalid-name
|
||||||
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
||||||
|
# get ntree_limit to use - if none specified, default to
|
||||||
|
# best_ntree_limit if defined, otherwise 0.
|
||||||
|
if ntree_limit is None:
|
||||||
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
||||||
return self.get_booster().predict(test_dmatrix,
|
return self.get_booster().predict(test_dmatrix,
|
||||||
output_margin=output_margin,
|
output_margin=output_margin,
|
||||||
ntree_limit=ntree_limit)
|
ntree_limit=ntree_limit)
|
||||||
@ -556,7 +560,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def predict(self, data, output_margin=False, ntree_limit=0):
|
def predict(self, data, output_margin=False, ntree_limit=None):
|
||||||
"""
|
"""
|
||||||
Predict with `data`.
|
Predict with `data`.
|
||||||
NOTE: This function is not thread safe.
|
NOTE: This function is not thread safe.
|
||||||
@ -570,12 +574,15 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
output_margin : bool
|
output_margin : bool
|
||||||
Whether to output the raw untransformed margin value.
|
Whether to output the raw untransformed margin value.
|
||||||
ntree_limit : int
|
ntree_limit : int
|
||||||
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
||||||
|
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
prediction : numpy array
|
prediction : numpy array
|
||||||
"""
|
"""
|
||||||
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
||||||
|
if ntree_limit is None:
|
||||||
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
||||||
class_probs = self.get_booster().predict(test_dmatrix,
|
class_probs = self.get_booster().predict(test_dmatrix,
|
||||||
output_margin=output_margin,
|
output_margin=output_margin,
|
||||||
ntree_limit=ntree_limit)
|
ntree_limit=ntree_limit)
|
||||||
@ -586,7 +593,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
column_indexes[class_probs > 0.5] = 1
|
column_indexes[class_probs > 0.5] = 1
|
||||||
return self._le.inverse_transform(column_indexes)
|
return self._le.inverse_transform(column_indexes)
|
||||||
|
|
||||||
def predict_proba(self, data, ntree_limit=0):
|
def predict_proba(self, data, ntree_limit=None):
|
||||||
"""
|
"""
|
||||||
Predict the probability of each `data` example being of a given class.
|
Predict the probability of each `data` example being of a given class.
|
||||||
NOTE: This function is not thread safe.
|
NOTE: This function is not thread safe.
|
||||||
@ -598,13 +605,16 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
|||||||
data : DMatrix
|
data : DMatrix
|
||||||
The dmatrix storing the input.
|
The dmatrix storing the input.
|
||||||
ntree_limit : int
|
ntree_limit : int
|
||||||
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
||||||
|
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
prediction : numpy array
|
prediction : numpy array
|
||||||
a numpy array with the probability of each data example being of a given class.
|
a numpy array with the probability of each data example being of a given class.
|
||||||
"""
|
"""
|
||||||
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
||||||
|
if ntree_limit is None:
|
||||||
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
||||||
class_probs = self.get_booster().predict(test_dmatrix,
|
class_probs = self.get_booster().predict(test_dmatrix,
|
||||||
ntree_limit=ntree_limit)
|
ntree_limit=ntree_limit)
|
||||||
if self.objective == "multi:softprob":
|
if self.objective == "multi:softprob":
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user