Reduce compile warnings (#6198)
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
This commit is contained in:
parent
a4ce0eae43
commit
6bc9747df5
@ -72,6 +72,9 @@ class TreeUpdater : public Configurable {
|
||||
*/
|
||||
virtual bool UpdatePredictionCache(const DMatrix* data,
|
||||
HostDeviceVector<bst_float>* out_preds) {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) data;
|
||||
(void) out_preds;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
@ -240,6 +240,9 @@ namespace aft {
|
||||
template <>
|
||||
XGBOOST_DEVICE inline double
|
||||
GetLimitGradAtInfPred<NormalDistribution>(CensoringType censor_type, bool sign, double sigma) {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) sigma;
|
||||
|
||||
switch (censor_type) {
|
||||
case CensoringType::kUncensored:
|
||||
return sign ? kMinGradient : kMaxGradient;
|
||||
@ -288,6 +291,10 @@ GetLimitGradAtInfPred<LogisticDistribution>(CensoringType censor_type, bool sign
|
||||
template <>
|
||||
XGBOOST_DEVICE inline double
|
||||
GetLimitHessAtInfPred<LogisticDistribution>(CensoringType censor_type, bool sign, double sigma) {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) sign;
|
||||
(void) sigma;
|
||||
|
||||
switch (censor_type) {
|
||||
case CensoringType::kUncensored:
|
||||
case CensoringType::kRightCensored:
|
||||
@ -317,6 +324,9 @@ GetLimitGradAtInfPred<ExtremeDistribution>(CensoringType censor_type, bool sign,
|
||||
template <>
|
||||
XGBOOST_DEVICE inline double
|
||||
GetLimitHessAtInfPred<ExtremeDistribution>(CensoringType censor_type, bool sign, double sigma) {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) sigma;
|
||||
|
||||
switch (censor_type) {
|
||||
case CensoringType::kUncensored:
|
||||
case CensoringType::kRightCensored:
|
||||
|
||||
@ -157,7 +157,10 @@ class Transform {
|
||||
/*! \brief Dummy funtion defined when compiling for CPU. */
|
||||
template <typename std::enable_if<!CompiledWithCuda>::type* = nullptr,
|
||||
typename... HDV>
|
||||
void LaunchCUDA(Functor _func, HDV*... _vectors) const {
|
||||
void LaunchCUDA(Functor _func, HDV*...) const {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) _func;
|
||||
|
||||
LOG(FATAL) << "Not part of device code. WITH_CUDA: " << WITH_CUDA();
|
||||
}
|
||||
#endif // defined(__CUDACC__)
|
||||
|
||||
@ -220,10 +220,10 @@ class FeatureSelector {
|
||||
* \param lambda Regularisation lambda.
|
||||
* \param param A parameter with algorithm-dependent use.
|
||||
*/
|
||||
virtual void Setup(const gbm::GBLinearModel &model,
|
||||
const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat,
|
||||
float alpha, float lambda, int param) {}
|
||||
virtual void Setup(const gbm::GBLinearModel &,
|
||||
const std::vector<GradientPair> &,
|
||||
DMatrix *,
|
||||
float , float , int ) {}
|
||||
/**
|
||||
* \brief Select next coordinate to update.
|
||||
*
|
||||
@ -250,8 +250,8 @@ class FeatureSelector {
|
||||
class CyclicFeatureSelector : public FeatureSelector {
|
||||
public:
|
||||
int NextFeature(int iteration, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda) override {
|
||||
int , const std::vector<GradientPair> &,
|
||||
DMatrix *, float, float) override {
|
||||
return iteration % model.learner_model_param->num_feature;
|
||||
}
|
||||
};
|
||||
@ -263,8 +263,8 @@ class CyclicFeatureSelector : public FeatureSelector {
|
||||
class ShuffleFeatureSelector : public FeatureSelector {
|
||||
public:
|
||||
void Setup(const gbm::GBLinearModel &model,
|
||||
const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda, int param) override {
|
||||
const std::vector<GradientPair> &g,
|
||||
DMatrix *, float, float, int) override {
|
||||
if (feat_index_.size() == 0) {
|
||||
feat_index_.resize(model.learner_model_param->num_feature);
|
||||
std::iota(feat_index_.begin(), feat_index_.end(), 0);
|
||||
@ -273,8 +273,8 @@ class ShuffleFeatureSelector : public FeatureSelector {
|
||||
}
|
||||
|
||||
int NextFeature(int iteration, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda) override {
|
||||
int, const std::vector<GradientPair> &,
|
||||
DMatrix *, float, float) override {
|
||||
return feat_index_[iteration % model.learner_model_param->num_feature];
|
||||
}
|
||||
|
||||
@ -288,9 +288,9 @@ class ShuffleFeatureSelector : public FeatureSelector {
|
||||
*/
|
||||
class RandomFeatureSelector : public FeatureSelector {
|
||||
public:
|
||||
int NextFeature(int iteration, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda) override {
|
||||
int NextFeature(int, const gbm::GBLinearModel &model,
|
||||
int, const std::vector<GradientPair> &,
|
||||
DMatrix *, float, float) override {
|
||||
return common::GlobalRandom()() % model.learner_model_param->num_feature;
|
||||
}
|
||||
};
|
||||
@ -307,8 +307,8 @@ class RandomFeatureSelector : public FeatureSelector {
|
||||
class GreedyFeatureSelector : public FeatureSelector {
|
||||
public:
|
||||
void Setup(const gbm::GBLinearModel &model,
|
||||
const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda, int param) override {
|
||||
const std::vector<GradientPair> &,
|
||||
DMatrix *, float, float, int param) override {
|
||||
top_k_ = static_cast<bst_uint>(param);
|
||||
const bst_uint ngroup = model.learner_model_param->num_output_group;
|
||||
if (param <= 0) top_k_ = std::numeric_limits<bst_uint>::max();
|
||||
@ -321,7 +321,7 @@ class GreedyFeatureSelector : public FeatureSelector {
|
||||
}
|
||||
}
|
||||
|
||||
int NextFeature(int iteration, const gbm::GBLinearModel &model,
|
||||
int NextFeature(int, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda) override {
|
||||
// k-th selected feature for a group
|
||||
@ -438,9 +438,9 @@ class ThriftyFeatureSelector : public FeatureSelector {
|
||||
}
|
||||
}
|
||||
|
||||
int NextFeature(int iteration, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &gpair,
|
||||
DMatrix *p_fmat, float alpha, float lambda) override {
|
||||
int NextFeature(int, const gbm::GBLinearModel &model,
|
||||
int group_idx, const std::vector<GradientPair> &,
|
||||
DMatrix *, float, float) override {
|
||||
// k-th selected feature for a group
|
||||
auto k = counter_[group_idx]++;
|
||||
// stop after either reaching top-N or going through all the features in a group
|
||||
|
||||
@ -49,6 +49,9 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
||||
const MetaInfo& info,
|
||||
int iter,
|
||||
HostDeviceVector<GradientPair>* out_gpair) override {
|
||||
// Remove unused parameter compiler warning.
|
||||
(void) iter;
|
||||
|
||||
if (info.labels_.Size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -787,7 +787,7 @@ void RegTree::LoadCategoricalSplit(Json const& in) {
|
||||
if (!categories_nodes.empty()) {
|
||||
last_cat_node = get<Integer const>(categories_nodes[cnt]);
|
||||
}
|
||||
for (size_t nidx = 0; nidx < param.num_nodes; ++nidx) {
|
||||
for (bst_node_t nidx = 0; nidx < param.num_nodes; ++nidx) {
|
||||
if (nidx == last_cat_node) {
|
||||
auto j_begin = get<Integer const>(categories_segments[cnt]);
|
||||
auto j_end = get<Integer const>(categories_sizes[cnt]) + j_begin;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user