Specify src path for isort. (#8867)

This commit is contained in:
Jiaming Yuan 2023-03-06 17:30:27 +08:00 committed by GitHub
parent 4d665b3fb0
commit 6a892ce281
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
37 changed files with 59 additions and 48 deletions

View File

@ -8,9 +8,9 @@ import os
import dask.dataframe as dd import dask.dataframe as dd
from dask.distributed import Client, LocalCluster from dask.distributed import Client, LocalCluster
from xgboost.dask import DaskDMatrix
import xgboost as xgb import xgboost as xgb
from xgboost.dask import DaskDMatrix
def main(client): def main(client):

View File

@ -5,9 +5,9 @@ Example of training with Dask on CPU
""" """
from dask import array as da from dask import array as da
from dask.distributed import Client, LocalCluster from dask.distributed import Client, LocalCluster
from xgboost.dask import DaskDMatrix
import xgboost as xgb import xgboost as xgb
from xgboost.dask import DaskDMatrix
def main(client): def main(client):

View File

@ -6,9 +6,9 @@ import numpy as np
from dask.distributed import Client, LocalCluster from dask.distributed import Client, LocalCluster
from dask_ml.datasets import make_regression from dask_ml.datasets import make_regression
from dask_ml.model_selection import train_test_split from dask_ml.model_selection import train_test_split
from xgboost.dask import DaskDMatrix
import xgboost as xgb import xgboost as xgb
from xgboost.dask import DaskDMatrix
def probability_for_going_backward(epoch): def probability_for_going_backward(epoch):

View File

@ -7,10 +7,10 @@ from dask import array as da
from dask import dataframe as dd from dask import dataframe as dd
from dask.distributed import Client from dask.distributed import Client
from dask_cuda import LocalCUDACluster from dask_cuda import LocalCUDACluster
from xgboost.dask import DaskDMatrix
import xgboost as xgb import xgboost as xgb
from xgboost import dask as dxgb from xgboost import dask as dxgb
from xgboost.dask import DaskDMatrix
def using_dask_matrix(client: Client, X, y): def using_dask_matrix(client: Client, X, y):

View File

@ -10,6 +10,7 @@ from pyspark.ml.linalg import Vectors
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from pyspark.sql.functions import rand from pyspark.sql.functions import rand
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor
spark = SparkSession.builder.master("local[*]").getOrCreate() spark = SparkSession.builder.master("local[*]").getOrCreate()

View File

@ -4,7 +4,6 @@ Example of training controller with NVFlare
""" """
import multiprocessing import multiprocessing
import xgboost.federated
from nvflare.apis.client import Client from nvflare.apis.client import Client
from nvflare.apis.fl_context import FLContext from nvflare.apis.fl_context import FLContext
from nvflare.apis.impl.controller import Controller, Task from nvflare.apis.impl.controller import Controller, Task
@ -12,6 +11,8 @@ from nvflare.apis.shareable import Shareable
from nvflare.apis.signal import Signal from nvflare.apis.signal import Signal
from trainer import SupportedTasks from trainer import SupportedTasks
import xgboost.federated
class XGBoostController(Controller): class XGBoostController(Controller):
def __init__(self, port: int, world_size: int, server_key_path: str, def __init__(self, port: int, world_size: int, server_key_path: str,

View File

@ -34,12 +34,12 @@ from pyspark.sql.types import (
ShortType, ShortType,
) )
from scipy.special import expit, softmax # pylint: disable=no-name-in-module from scipy.special import expit, softmax # pylint: disable=no-name-in-module
from xgboost.compat import is_cudf_available
from xgboost.core import Booster
from xgboost.training import train as worker_train
import xgboost import xgboost
from xgboost import XGBClassifier, XGBRanker, XGBRegressor from xgboost import XGBClassifier, XGBRanker, XGBRegressor
from xgboost.compat import is_cudf_available
from xgboost.core import Booster
from xgboost.training import train as worker_train
from .data import ( from .data import (
_read_csr_matrix_from_unwrapped_spark_vec, _read_csr_matrix_from_unwrapped_spark_vec,

View File

@ -6,9 +6,9 @@ from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tupl
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from scipy.sparse import csr_matrix from scipy.sparse import csr_matrix
from xgboost.compat import concat
from xgboost import DataIter, DMatrix, QuantileDMatrix, XGBModel from xgboost import DataIter, DMatrix, QuantileDMatrix, XGBModel
from xgboost.compat import concat
from .._typing import ArrayLike from .._typing import ArrayLike
from ..core import _convert_ntree_limit from ..core import _convert_ntree_limit

View File

@ -8,6 +8,7 @@ import uuid
from pyspark import SparkFiles, cloudpickle from pyspark import SparkFiles, cloudpickle
from pyspark.ml.util import DefaultParamsReader, DefaultParamsWriter, MLReader, MLWriter from pyspark.ml.util import DefaultParamsReader, DefaultParamsWriter, MLReader, MLWriter
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from xgboost.core import Booster from xgboost.core import Booster
from .utils import get_class_name, get_logger from .utils import get_class_name, get_logger

View File

@ -8,9 +8,9 @@ from typing import Any, Callable, Dict, Set, Type
import pyspark import pyspark
from pyspark import BarrierTaskContext, SparkContext from pyspark import BarrierTaskContext, SparkContext
from pyspark.sql.session import SparkSession from pyspark.sql.session import SparkSession
from xgboost.tracker import RabitTracker
from xgboost import collective from xgboost import collective
from xgboost.tracker import RabitTracker
def get_class_name(cls: Type) -> str: def get_class_name(cls: Type) -> str:

View File

@ -33,10 +33,10 @@ from urllib import request
import numpy as np import numpy as np
import pytest import pytest
from scipy import sparse from scipy import sparse
from xgboost.core import ArrayLike
from xgboost.sklearn import SklObjective
import xgboost as xgb import xgboost as xgb
from xgboost.core import ArrayLike
from xgboost.sklearn import SklObjective
hypothesis = pytest.importorskip("hypothesis") hypothesis = pytest.importorskip("hypothesis")

View File

@ -2,9 +2,9 @@
import numpy as np import numpy as np
from dask import array as da from dask import array as da
from distributed import Client from distributed import Client
from xgboost.testing.updater import get_basescore
import xgboost as xgb import xgboost as xgb
from xgboost.testing.updater import get_basescore
def check_init_estimation_clf(tree_method: str, client: Client) -> None: def check_init_estimation_clf(tree_method: str, client: Client) -> None:

View File

@ -2,6 +2,7 @@
from typing import Any, Generator, Tuple, Union from typing import Any, Generator, Tuple, Union
import numpy as np import numpy as np
from xgboost.data import pandas_pyarrow_mapper from xgboost.data import pandas_pyarrow_mapper

View File

@ -8,9 +8,9 @@ import tempfile
from typing import Any, Callable, Dict, Type from typing import Any, Callable, Dict, Type
import numpy as np import numpy as np
from xgboost._typing import ArrayLike
import xgboost as xgb import xgboost as xgb
from xgboost._typing import ArrayLike
def validate_leaf_output(leaf: np.ndarray, num_parallel_tree: int) -> None: def validate_leaf_output(leaf: np.ndarray, num_parallel_tree: int) -> None:

View File

@ -4,9 +4,9 @@ from functools import partial, update_wrapper
from typing import Dict from typing import Dict
import numpy as np import numpy as np
import xgboost.testing as tm
import xgboost as xgb import xgboost as xgb
import xgboost.testing as tm
def get_basescore(model: xgb.XGBModel) -> float: def get_basescore(model: xgb.XGBModel) -> float:
@ -78,6 +78,7 @@ def check_quantile_loss(tree_method: str, weighted: bool) -> None:
"""Test for quantile loss.""" """Test for quantile loss."""
from sklearn.datasets import make_regression from sklearn.datasets import make_regression
from sklearn.metrics import mean_pinball_loss from sklearn.metrics import mean_pinball_loss
from xgboost.sklearn import _metric_decorator from xgboost.sklearn import _metric_decorator
n_samples = 4096 n_samples = 4096

View File

@ -3,12 +3,15 @@ import os
import subprocess import subprocess
import sys import sys
from multiprocessing import Pool, cpu_count from multiprocessing import Pool, cpu_count
from typing import Dict, Tuple from typing import Dict, Optional, Tuple
from pylint import epylint from pylint import epylint
from test_utils import PY_PACKAGE, ROOT, cd, print_time, record_time from test_utils import PY_PACKAGE, ROOT, cd, print_time, record_time
CURDIR = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) CURDIR = os.path.normpath(os.path.abspath(os.path.dirname(__file__)))
SRCPATH = os.path.normpath(
os.path.join(CURDIR, os.path.pardir, os.path.pardir, "python-package")
)
@record_time @record_time
@ -29,7 +32,7 @@ Please run the following command on your machine to address the formatting error
@record_time @record_time
def run_isort(rel_path: str) -> bool: def run_isort(rel_path: str) -> bool:
cmd = ["isort", "--check", "--profile=black", rel_path] cmd = ["isort", f"--src={SRCPATH}", "--check", "--profile=black", rel_path]
ret = subprocess.run(cmd).returncode ret = subprocess.run(cmd).returncode
if ret != 0: if ret != 0:
subprocess.run(["isort", "--version"]) subprocess.run(["isort", "--version"])

View File

@ -2,6 +2,7 @@ import sys
import pytest import pytest
from hypothesis import given, settings, strategies from hypothesis import given, settings, strategies
from xgboost.testing import no_cupy from xgboost.testing import no_cupy
sys.path.append("tests/python") sys.path.append("tests/python")

View File

@ -1,10 +1,10 @@
import sys import sys
import pytest import pytest
from xgboost.testing.metrics import check_quantile_error
import xgboost import xgboost
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.metrics import check_quantile_error
sys.path.append("tests/python") sys.path.append("tests/python")
import test_eval_metrics as test_em # noqa import test_eval_metrics as test_em # noqa

View File

@ -3,10 +3,10 @@ import sys
import numpy as np import numpy as np
import pytest import pytest
from hypothesis import assume, given, settings, strategies from hypothesis import assume, given, settings, strategies
from xgboost.compat import PANDAS_INSTALLED
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.compat import PANDAS_INSTALLED
if PANDAS_INSTALLED: if PANDAS_INSTALLED:
from hypothesis.extra.pandas import column, data_frames, range_indexes from hypothesis.extra.pandas import column, data_frames, range_indexes

View File

@ -4,11 +4,11 @@ from typing import Any, Dict
import numpy as np import numpy as np
import pytest import pytest
from hypothesis import assume, given, note, settings, strategies from hypothesis import assume, given, note, settings, strategies
from xgboost.testing.params import cat_parameter_strategy, hist_parameter_strategy
from xgboost.testing.updater import check_init_estimation, check_quantile_loss
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.params import cat_parameter_strategy, hist_parameter_strategy
from xgboost.testing.updater import check_init_estimation, check_quantile_loss
sys.path.append("tests/python") sys.path.append("tests/python")
import test_updaters as test_up import test_updaters as test_up

View File

@ -4,11 +4,11 @@ import numpy as np
import pytest import pytest
from hypothesis import given, settings, strategies from hypothesis import given, settings, strategies
from scipy.sparse import csr_matrix from scipy.sparse import csr_matrix
from xgboost.data import SingleBatchInternalIter as SingleBatch
from xgboost.testing import IteratorForTest, make_batches, non_increasing
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.data import SingleBatchInternalIter as SingleBatch
from xgboost.testing import IteratorForTest, make_batches, non_increasing
pytestmark = tm.timeout(30) pytestmark = tm.timeout(30)

View File

@ -6,10 +6,10 @@ import pytest
import scipy.sparse import scipy.sparse
from hypothesis import given, settings, strategies from hypothesis import given, settings, strategies
from scipy.sparse import csr_matrix, rand from scipy.sparse import csr_matrix, rand
from xgboost.testing.data import np_dtypes
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.data import np_dtypes
rng = np.random.RandomState(1) rng = np.random.RandomState(1)

View File

@ -1,9 +1,9 @@
import numpy as np import numpy as np
import pytest import pytest
from xgboost.testing.updater import get_basescore
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.updater import get_basescore
rng = np.random.RandomState(1994) rng = np.random.RandomState(1994)

View File

@ -1,9 +1,9 @@
import numpy as np import numpy as np
import pytest import pytest
from xgboost.testing.metrics import check_quantile_error
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.metrics import check_quantile_error
rng = np.random.RandomState(1337) rng = np.random.RandomState(1337)

View File

@ -5,11 +5,11 @@ import numpy as np
import pandas as pd import pandas as pd
import pytest import pytest
from scipy import sparse from scipy import sparse
from xgboost.testing.data import np_dtypes, pd_dtypes
from xgboost.testing.shared import validate_leaf_output
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.data import np_dtypes, pd_dtypes
from xgboost.testing.shared import validate_leaf_output
def run_threaded_predict(X, rows, predict_func): def run_threaded_predict(X, rows, predict_func):

View File

@ -4,6 +4,8 @@ import numpy as np
import pytest import pytest
from hypothesis import given, settings, strategies from hypothesis import given, settings, strategies
from scipy import sparse from scipy import sparse
import xgboost as xgb
from xgboost.testing import ( from xgboost.testing import (
IteratorForTest, IteratorForTest,
make_batches, make_batches,
@ -15,8 +17,6 @@ from xgboost.testing import (
) )
from xgboost.testing.data import np_dtypes from xgboost.testing.data import np_dtypes
import xgboost as xgb
class TestQuantileDMatrix: class TestQuantileDMatrix:
def test_basic(self) -> None: def test_basic(self) -> None:

View File

@ -5,6 +5,9 @@ from typing import Any, Dict, List
import numpy as np import numpy as np
import pytest import pytest
from hypothesis import given, note, settings, strategies from hypothesis import given, note, settings, strategies
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.params import ( from xgboost.testing.params import (
cat_parameter_strategy, cat_parameter_strategy,
exact_parameter_strategy, exact_parameter_strategy,
@ -12,9 +15,6 @@ from xgboost.testing.params import (
) )
from xgboost.testing.updater import check_init_estimation, check_quantile_loss from xgboost.testing.updater import check_init_estimation, check_quantile_loss
import xgboost as xgb
from xgboost import testing as tm
def train_result(param, dmat, num_rounds): def train_result(param, dmat, num_rounds):
result = {} result = {}

View File

@ -3,10 +3,10 @@ from typing import Type
import numpy as np import numpy as np
import pytest import pytest
from test_dmatrix import set_base_margin_info from test_dmatrix import set_base_margin_info
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.data import pd_arrow_dtypes, pd_dtypes
try: try:
import pandas as pd import pandas as pd

View File

@ -8,11 +8,11 @@ from typing import Callable, Optional
import numpy as np import numpy as np
import pytest import pytest
from sklearn.utils.estimator_checks import parametrize_with_checks from sklearn.utils.estimator_checks import parametrize_with_checks
from xgboost.testing.shared import get_feature_weights, validate_data_initialization
from xgboost.testing.updater import get_basescore
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.shared import get_feature_weights, validate_data_initialization
from xgboost.testing.updater import get_basescore
rng = np.random.RandomState(1994) rng = np.random.RandomState(1994)
pytestmark = [pytest.mark.skipif(**tm.no_sklearn()), tm.timeout(30)] pytestmark = [pytest.mark.skipif(**tm.no_sklearn()), tm.timeout(30)]

View File

@ -3,9 +3,8 @@ import multiprocessing
import sys import sys
import time import time
import xgboost.federated
import xgboost as xgb import xgboost as xgb
import xgboost.federated
SERVER_KEY = 'server-key.pem' SERVER_KEY = 'server-key.pem'
SERVER_CERT = 'server-cert.pem' SERVER_CERT = 'server-cert.pem'

View File

@ -10,10 +10,10 @@ import numpy as np
import pytest import pytest
from hypothesis import given, note, settings, strategies from hypothesis import given, note, settings, strategies
from hypothesis._settings import duration from hypothesis._settings import duration
from xgboost.testing.params import hist_parameter_strategy
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.testing.params import hist_parameter_strategy
pytestmark = [ pytestmark = [
pytest.mark.skipif(**tm.no_dask()), pytest.mark.skipif(**tm.no_dask()),
@ -42,9 +42,9 @@ try:
from dask import array as da from dask import array as da
from dask.distributed import Client from dask.distributed import Client
from dask_cuda import LocalCUDACluster from dask_cuda import LocalCUDACluster
from xgboost.testing.dask import check_init_estimation
from xgboost import dask as dxgb from xgboost import dask as dxgb
from xgboost.testing.dask import check_init_estimation
except ImportError: except ImportError:
pass pass

View File

@ -12,6 +12,7 @@ pytestmark = pytest.mark.skipif(**tm.no_spark())
from pyspark.ml.linalg import Vectors from pyspark.ml.linalg import Vectors
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor
gpu_discovery_script_path = "tests/test_distributed/test_gpu_with_spark/discover_gpu.sh" gpu_discovery_script_path = "tests/test_distributed/test_gpu_with_spark/discover_gpu.sh"

View File

@ -21,6 +21,9 @@ import scipy
import sklearn import sklearn
from hypothesis import HealthCheck, given, note, settings from hypothesis import HealthCheck, given, note, settings
from sklearn.datasets import make_classification, make_regression from sklearn.datasets import make_classification, make_regression
import xgboost as xgb
from xgboost import testing as tm
from xgboost.data import _is_cudf_df from xgboost.data import _is_cudf_df
from xgboost.testing.params import hist_parameter_strategy from xgboost.testing.params import hist_parameter_strategy
from xgboost.testing.shared import ( from xgboost.testing.shared import (
@ -29,9 +32,6 @@ from xgboost.testing.shared import (
validate_leaf_output, validate_leaf_output,
) )
import xgboost as xgb
from xgboost import testing as tm
pytestmark = [tm.timeout(60), pytest.mark.skipif(**tm.no_dask())] pytestmark = [tm.timeout(60), pytest.mark.skipif(**tm.no_dask())]
import dask import dask
@ -39,6 +39,7 @@ import dask.array as da
import dask.dataframe as dd import dask.dataframe as dd
from distributed import Client, LocalCluster from distributed import Client, LocalCluster
from toolz import sliding_window # dependency of dask from toolz import sliding_window # dependency of dask
from xgboost.dask import DaskDMatrix from xgboost.dask import DaskDMatrix
from xgboost.testing.dask import check_init_estimation from xgboost.testing.dask import check_init_estimation

View File

@ -8,6 +8,7 @@ from xgboost import testing as tm
pytestmark = [pytest.mark.skipif(**tm.no_spark())] pytestmark = [pytest.mark.skipif(**tm.no_spark())]
from xgboost import DMatrix, QuantileDMatrix
from xgboost.spark.data import ( from xgboost.spark.data import (
_read_csr_matrix_from_unwrapped_spark_vec, _read_csr_matrix_from_unwrapped_spark_vec,
alias, alias,
@ -15,8 +16,6 @@ from xgboost.spark.data import (
stack_series, stack_series,
) )
from xgboost import DMatrix, QuantileDMatrix
def test_stack() -> None: def test_stack() -> None:
a = pd.DataFrame({"a": [[1, 2], [3, 4]]}) a = pd.DataFrame({"a": [[1, 2], [3, 4]]})

View File

@ -8,10 +8,10 @@ from typing import Generator, Sequence, Type
import numpy as np import numpy as np
import pytest import pytest
from xgboost.spark.data import pred_contribs
import xgboost as xgb import xgboost as xgb
from xgboost import testing as tm from xgboost import testing as tm
from xgboost.spark.data import pred_contribs
pytestmark = [tm.timeout(60), pytest.mark.skipif(**tm.no_spark())] pytestmark = [tm.timeout(60), pytest.mark.skipif(**tm.no_spark())]
@ -23,6 +23,8 @@ from pyspark.ml.linalg import Vectors
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from pyspark.sql import functions as spark_sql_func from pyspark.sql import functions as spark_sql_func
from xgboost import XGBClassifier, XGBModel, XGBRegressor
from xgboost.spark import ( from xgboost.spark import (
SparkXGBClassifier, SparkXGBClassifier,
SparkXGBClassifierModel, SparkXGBClassifierModel,
@ -32,8 +34,6 @@ from xgboost.spark import (
) )
from xgboost.spark.core import _non_booster_params from xgboost.spark.core import _non_booster_params
from xgboost import XGBClassifier, XGBModel, XGBRegressor
from .utils import SparkTestCase from .utils import SparkTestCase
logging.getLogger("py4j").setLevel(logging.INFO) logging.getLogger("py4j").setLevel(logging.INFO)

View File

@ -11,6 +11,7 @@ from xgboost import testing as tm
pytestmark = pytest.mark.skipif(**tm.no_spark()) pytestmark = pytest.mark.skipif(**tm.no_spark())
from pyspark.ml.linalg import Vectors from pyspark.ml.linalg import Vectors
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor
from xgboost.spark.utils import _get_max_num_concurrent_tasks from xgboost.spark.utils import _get_max_num_concurrent_tasks

View File

@ -13,6 +13,7 @@ from xgboost import testing as tm
pytestmark = [pytest.mark.skipif(**tm.no_spark())] pytestmark = [pytest.mark.skipif(**tm.no_spark())]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from xgboost.spark.utils import _get_default_params_from_func from xgboost.spark.utils import _get_default_params_from_func