Remove omp_get_max_threads in objective. (#7589)
This commit is contained in:
parent
5817840858
commit
6967ef7267
@ -25,7 +25,7 @@ namespace xgboost {
|
||||
/*! \brief interface of objective function */
|
||||
class ObjFunction : public Configurable {
|
||||
protected:
|
||||
GenericParameter const* tparam_;
|
||||
GenericParameter const* ctx_;
|
||||
|
||||
public:
|
||||
/*! \brief virtual destructor */
|
||||
|
||||
@ -1,22 +1,21 @@
|
||||
/*!
|
||||
* Copyright 2018 XGBoost contributors
|
||||
* Copyright 2018-2022 XGBoost contributors
|
||||
*/
|
||||
#ifndef XGBOOST_COMMON_TRANSFORM_H_
|
||||
#define XGBOOST_COMMON_TRANSFORM_H_
|
||||
|
||||
#include <dmlc/omp.h>
|
||||
#include <dmlc/common.h>
|
||||
|
||||
#include <dmlc/omp.h>
|
||||
#include <xgboost/data.h>
|
||||
|
||||
#include <type_traits> // enable_if
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <type_traits> // enable_if
|
||||
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "xgboost/span.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "threading_utils.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "xgboost/span.h"
|
||||
|
||||
#if defined (__CUDACC__)
|
||||
#include "device_helpers.cuh"
|
||||
@ -61,10 +60,8 @@ class Transform {
|
||||
template <typename Functor>
|
||||
struct Evaluator {
|
||||
public:
|
||||
Evaluator(Functor func, Range range, int device, bool shard) :
|
||||
func_(func), range_{std::move(range)},
|
||||
shard_{shard},
|
||||
device_{device} {}
|
||||
Evaluator(Functor func, Range range, int32_t n_threads, int32_t device_idx)
|
||||
: func_(func), range_{std::move(range)}, n_threads_{n_threads}, device_{device_idx} {}
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the functor with input pointers to HostDeviceVector.
|
||||
@ -134,9 +131,7 @@ class Transform {
|
||||
template <typename std::enable_if<CompiledWithCuda>::type* = nullptr,
|
||||
typename... HDV>
|
||||
void LaunchCUDA(Functor _func, HDV*... _vectors) const {
|
||||
if (shard_) {
|
||||
UnpackShard(device_, _vectors...);
|
||||
}
|
||||
|
||||
size_t range_size = *range_.end() - *range_.begin();
|
||||
|
||||
@ -167,12 +162,10 @@ class Transform {
|
||||
#endif // defined(__CUDACC__)
|
||||
|
||||
template <typename... HDV>
|
||||
void LaunchCPU(Functor func, HDV*... vectors) const {
|
||||
void LaunchCPU(Functor func, HDV *...vectors) const {
|
||||
omp_ulong end = static_cast<omp_ulong>(*(range_.end()));
|
||||
SyncHost(vectors...);
|
||||
ParallelFor(end, [&](omp_ulong idx) {
|
||||
func(idx, UnpackHDV(vectors)...);
|
||||
});
|
||||
ParallelFor(end, n_threads_, [&](omp_ulong idx) { func(idx, UnpackHDV(vectors)...); });
|
||||
}
|
||||
|
||||
private:
|
||||
@ -180,9 +173,8 @@ class Transform {
|
||||
Functor func_;
|
||||
/*! \brief Range object specifying parallel threads index range. */
|
||||
Range range_;
|
||||
/*! \brief Whether sharding for vectors is required. */
|
||||
bool shard_;
|
||||
int device_;
|
||||
int32_t n_threads_;
|
||||
int32_t device_;
|
||||
};
|
||||
|
||||
public:
|
||||
@ -195,14 +187,13 @@ class Transform {
|
||||
* \param func A callable object, accepting a size_t thread index,
|
||||
* followed by a set of Span classes.
|
||||
* \param range Range object specifying parallel threads index range.
|
||||
* \param device Specify GPU to use.
|
||||
* \param shard Whether Shard for HostDeviceVector is needed.
|
||||
* \param n_threads Number of CPU threads
|
||||
* \param device_idx GPU device ordinal
|
||||
*/
|
||||
template <typename Functor>
|
||||
static Evaluator<Functor> Init(Functor func, Range const range,
|
||||
int device,
|
||||
bool const shard = true) {
|
||||
return Evaluator<Functor> {func, std::move(range), device, shard};
|
||||
static Evaluator<Functor> Init(Functor func, Range const range, int32_t n_threads,
|
||||
int32_t device_idx) {
|
||||
return Evaluator<Functor>{func, std::move(range), n_threads, device_idx};
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2019-2020 by Contributors
|
||||
* Copyright 2019-2022 by Contributors
|
||||
* \file aft_obj.cu
|
||||
* \brief Definition of AFT loss for survival analysis.
|
||||
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
|
||||
@ -65,7 +65,7 @@ class AFTObj : public ObjFunction {
|
||||
const bst_float w = is_null_weight ? 1.0f : _weights[_idx];
|
||||
_out_gpair[_idx] = GradientPair(grad * w, hess * w);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, device).Eval(
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(), device).Eval(
|
||||
out_gpair, &preds, &info.labels_lower_bound_, &info.labels_upper_bound_,
|
||||
&info.weights_);
|
||||
}
|
||||
@ -78,7 +78,7 @@ class AFTObj : public ObjFunction {
|
||||
CHECK_EQ(info.labels_lower_bound_.Size(), ndata);
|
||||
CHECK_EQ(info.labels_upper_bound_.Size(), ndata);
|
||||
out_gpair->Resize(ndata);
|
||||
const int device = tparam_->gpu_id;
|
||||
const int device = ctx_->gpu_id;
|
||||
const float aft_loss_distribution_scale = param_.aft_loss_distribution_scale;
|
||||
const bool is_null_weight = info.weights_.Size() == 0;
|
||||
if (!is_null_weight) {
|
||||
@ -109,7 +109,8 @@ class AFTObj : public ObjFunction {
|
||||
common::Transform<>::Init(
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
||||
_preds[_idx] = exp(_preds[_idx]);
|
||||
}, common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2018-2019 by Contributors
|
||||
* Copyright 2018-2022 by XGBoost Contributors
|
||||
* \file hinge.cc
|
||||
* \brief Provides an implementation of the hinge loss function
|
||||
* \author Henry Gouk
|
||||
@ -65,8 +65,8 @@ class HingeObj : public ObjFunction {
|
||||
}
|
||||
_out_gpair[_idx] = GradientPair(g, h);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(ndata)},
|
||||
tparam_->gpu_id).Eval(
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(),
|
||||
ctx_->gpu_id).Eval(
|
||||
out_gpair, &preds, info.labels.Data(), &info.weights_);
|
||||
}
|
||||
|
||||
@ -75,7 +75,7 @@ class HingeObj : public ObjFunction {
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
||||
_preds[_idx] = _preds[_idx] > 0.0 ? 1.0 : 0.0;
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size()), 1},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size()), 1}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2015-2018 by Contributors
|
||||
* Copyright 2015-2022 by XGBoost Contributors
|
||||
* \file multi_class.cc
|
||||
* \brief Definition of multi-class classification objectives.
|
||||
* \author Tianqi Chen
|
||||
@ -68,7 +68,7 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
||||
const int nclass = param_.num_class;
|
||||
const auto ndata = static_cast<int64_t>(preds.Size() / nclass);
|
||||
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
out_gpair->SetDevice(device);
|
||||
info.labels.SetDevice(device);
|
||||
info.weights_.SetDevice(device);
|
||||
@ -114,7 +114,7 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
||||
p = label == k ? p - 1.0f : p;
|
||||
gpair[idx * nclass + k] = GradientPair(p * wt, h);
|
||||
}
|
||||
}, common::Range{0, ndata}, device, false)
|
||||
}, common::Range{0, ndata}, ctx_->Threads(), device)
|
||||
.Eval(out_gpair, info.labels.Data(), &preds, &info.weights_, &label_correct_);
|
||||
|
||||
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
||||
@ -146,7 +146,7 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
||||
_preds.subspan(_idx * nclass, nclass);
|
||||
common::Softmax(point.begin(), point.end());
|
||||
},
|
||||
common::Range{0, ndata}, device)
|
||||
common::Range{0, ndata}, this->ctx_->Threads(), device)
|
||||
.Eval(io_preds);
|
||||
} else {
|
||||
io_preds->SetDevice(device);
|
||||
@ -162,7 +162,7 @@ class SoftmaxMultiClassObj : public ObjFunction {
|
||||
common::FindMaxIndex(point.cbegin(), point.cend()) -
|
||||
point.cbegin();
|
||||
},
|
||||
common::Range{0, ndata}, device, false)
|
||||
common::Range{0, ndata}, this->ctx_->Threads(), device)
|
||||
.Eval(io_preds, &max_preds);
|
||||
io_preds->Resize(max_preds.Size());
|
||||
io_preds->Copy(max_preds);
|
||||
|
||||
@ -27,7 +27,7 @@ ObjFunction* ObjFunction::Create(const std::string& name, GenericParameter const
|
||||
<< ss.str();
|
||||
}
|
||||
auto pobj = (e->body)();
|
||||
pobj->tparam_ = tparam;
|
||||
pobj->ctx_ = tparam;
|
||||
return pobj;
|
||||
}
|
||||
|
||||
|
||||
@ -773,7 +773,7 @@ class LambdaRankObj : public ObjFunction {
|
||||
|
||||
#if defined(__CUDACC__)
|
||||
// Check if we have a GPU assignment; else, revert back to CPU
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
if (device >= 0) {
|
||||
ComputeGradientsOnGPU(preds, info, iter, out_gpair, gptr);
|
||||
} else {
|
||||
@ -909,7 +909,7 @@ class LambdaRankObj : public ObjFunction {
|
||||
const std::vector<unsigned> &gptr) {
|
||||
LOG(DEBUG) << "Computing " << LambdaWeightComputerT::Name() << " gradients on GPU.";
|
||||
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
dh::safe_cuda(cudaSetDevice(device));
|
||||
|
||||
bst_float weight_normalization_factor = ComputeWeightNormalizationFactor(info, gptr);
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2015-2019 by Contributors
|
||||
* Copyright 2015-2022 by XGBoost Contributors
|
||||
* \file regression_obj.cu
|
||||
* \brief Definition of single-value regression and classification objectives.
|
||||
* \author Tianqi Chen, Kailong Chen
|
||||
@ -70,7 +70,7 @@ class RegLossObj : public ObjFunction {
|
||||
<< "Loss: " << Loss::Name();
|
||||
size_t const ndata = preds.Size();
|
||||
out_gpair->Resize(ndata);
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
additional_input_.HostVector().begin()[0] = 1; // Fill the label_correct flag
|
||||
|
||||
bool is_null_weight = info.weights_.Size() == 0;
|
||||
@ -82,7 +82,7 @@ class RegLossObj : public ObjFunction {
|
||||
additional_input_.HostVector().begin()[1] = scale_pos_weight;
|
||||
additional_input_.HostVector().begin()[2] = is_null_weight;
|
||||
|
||||
const size_t nthreads = tparam_->Threads();
|
||||
const size_t nthreads = ctx_->Threads();
|
||||
bool on_device = device >= 0;
|
||||
// On CPU we run the transformation each thread processing a contigious block of data
|
||||
// for better performance.
|
||||
@ -121,7 +121,7 @@ class RegLossObj : public ObjFunction {
|
||||
Loss::SecondOrderGradient(p, label) * w);
|
||||
}
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(n_data_blocks)}, device)
|
||||
common::Range{0, static_cast<int64_t>(n_data_blocks)}, nthreads, device)
|
||||
.Eval(&additional_input_, out_gpair, &preds, info.labels.Data(),
|
||||
&info.weights_);
|
||||
|
||||
@ -140,7 +140,8 @@ class RegLossObj : public ObjFunction {
|
||||
common::Transform<>::Init(
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<float> _preds) {
|
||||
_preds[_idx] = Loss::PredTransform(_preds[_idx]);
|
||||
}, common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
@ -228,7 +229,7 @@ class PoissonRegression : public ObjFunction {
|
||||
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
||||
size_t const ndata = preds.Size();
|
||||
out_gpair->Resize(ndata);
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
label_correct_.Resize(1);
|
||||
label_correct_.Fill(1);
|
||||
|
||||
@ -254,7 +255,7 @@ class PoissonRegression : public ObjFunction {
|
||||
_out_gpair[_idx] = GradientPair{(expf(p) - y) * w,
|
||||
expf(p + max_delta_step) * w};
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, device).Eval(
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(), device).Eval(
|
||||
&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
||||
// copy "label correct" flags back to host
|
||||
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
||||
@ -269,7 +270,7 @@ class PoissonRegression : public ObjFunction {
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
||||
_preds[_idx] = expf(_preds[_idx]);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
@ -381,7 +382,7 @@ class CoxRegression : public ObjFunction {
|
||||
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
||||
std::vector<bst_float> &preds = io_preds->HostVector();
|
||||
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
|
||||
common::ParallelFor(ndata, [&](long j) { // NOLINT(*)
|
||||
common::ParallelFor(ndata, ctx_->Threads(), [&](long j) { // NOLINT(*)
|
||||
preds[j] = std::exp(preds[j]);
|
||||
});
|
||||
}
|
||||
@ -423,7 +424,7 @@ class GammaRegression : public ObjFunction {
|
||||
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
|
||||
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
||||
const size_t ndata = preds.Size();
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
out_gpair->Resize(ndata);
|
||||
label_correct_.Resize(1);
|
||||
label_correct_.Fill(1);
|
||||
@ -448,7 +449,7 @@ class GammaRegression : public ObjFunction {
|
||||
}
|
||||
_out_gpair[_idx] = GradientPair((1 - y / expf(p)) * w, y / expf(p) * w);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, device).Eval(
|
||||
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(), device).Eval(
|
||||
&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
||||
|
||||
// copy "label correct" flags back to host
|
||||
@ -464,7 +465,7 @@ class GammaRegression : public ObjFunction {
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
||||
_preds[_idx] = expf(_preds[_idx]);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
@ -525,7 +526,7 @@ class TweedieRegression : public ObjFunction {
|
||||
const size_t ndata = preds.Size();
|
||||
out_gpair->Resize(ndata);
|
||||
|
||||
auto device = tparam_->gpu_id;
|
||||
auto device = ctx_->gpu_id;
|
||||
label_correct_.Resize(1);
|
||||
label_correct_.Fill(1);
|
||||
|
||||
@ -555,7 +556,7 @@ class TweedieRegression : public ObjFunction {
|
||||
std::exp((1 - rho) * p) + (2 - rho) * expf((2 - rho) * p);
|
||||
_out_gpair[_idx] = GradientPair(grad * w, hess * w);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(ndata), 1}, device)
|
||||
common::Range{0, static_cast<int64_t>(ndata), 1}, this->ctx_->Threads(), device)
|
||||
.Eval(&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
||||
|
||||
// copy "label correct" flags back to host
|
||||
@ -571,7 +572,7 @@ class TweedieRegression : public ObjFunction {
|
||||
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
||||
_preds[_idx] = expf(_preds[_idx]);
|
||||
},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
||||
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
|
||||
io_preds->DeviceIdx())
|
||||
.Eval(io_preds);
|
||||
}
|
||||
|
||||
@ -176,7 +176,7 @@ class TreeEvaluator {
|
||||
lower[rightid] = mid;
|
||||
}
|
||||
},
|
||||
common::Range(0, 1), device_, false)
|
||||
common::Range(0, 1), 1, device_)
|
||||
.Eval(&lower_bounds_, &upper_bounds_, &monotone_);
|
||||
}
|
||||
};
|
||||
|
||||
@ -1,3 +1,6 @@
|
||||
/*!
|
||||
* Copyright 2018-2022 by XGBoost Contributors
|
||||
*/
|
||||
#include <gtest/gtest.h>
|
||||
#include <xgboost/base.h>
|
||||
#include <xgboost/span.h>
|
||||
@ -42,7 +45,7 @@ TEST(Transform, DeclareUnifiedTest(Basic)) {
|
||||
out_vec.Fill(0);
|
||||
|
||||
Transform<>::Init(TestTransformRange<bst_float>{},
|
||||
Range{0, static_cast<Range::DifferenceType>(size)},
|
||||
Range{0, static_cast<Range::DifferenceType>(size)}, common::OmpGetNumThreads(0),
|
||||
TRANSFORM_GPU)
|
||||
.Eval(&out_vec, &in_vec);
|
||||
std::vector<bst_float> res = out_vec.HostVector();
|
||||
@ -55,11 +58,14 @@ TEST(TransformDeathTest, Exception) {
|
||||
size_t const kSize {16};
|
||||
std::vector<bst_float> h_in(kSize);
|
||||
const HostDeviceVector<bst_float> in_vec{h_in, -1};
|
||||
EXPECT_DEATH({
|
||||
EXPECT_DEATH(
|
||||
{
|
||||
Transform<>::Init([](size_t idx, common::Span<float const> _in) { _in[idx + 1]; },
|
||||
Range(0, static_cast<Range::DifferenceType>(kSize)), -1)
|
||||
Range(0, static_cast<Range::DifferenceType>(kSize)),
|
||||
common::OmpGetNumThreads(0), -1)
|
||||
.Eval(&in_vec);
|
||||
}, "");
|
||||
},
|
||||
"");
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
@ -1,4 +1,7 @@
|
||||
// This converts all tests from CPU to GPU.
|
||||
/*!
|
||||
* Copyright 2018-2022 by XGBoost Contributors
|
||||
* \brief This converts all tests from CPU to GPU.
|
||||
*/
|
||||
#include "test_transform_range.cc"
|
||||
|
||||
#if defined(XGBOOST_USE_NCCL)
|
||||
@ -22,8 +25,8 @@ TEST(Transform, MGPU_SpecifiedGpuId) { // NOLINT
|
||||
const HostDeviceVector<bst_float> in_vec {h_in, device};
|
||||
HostDeviceVector<bst_float> out_vec {h_out, device};
|
||||
|
||||
ASSERT_NO_THROW(
|
||||
Transform<>::Init(TestTransformRange<bst_float>{}, Range{0, size}, device)
|
||||
ASSERT_NO_THROW(Transform<>::Init(TestTransformRange<bst_float>{}, Range{0, size},
|
||||
common::OmpGetNumThreads(0), device)
|
||||
.Eval(&out_vec, &in_vec));
|
||||
std::vector<bst_float> res = out_vec.HostVector();
|
||||
ASSERT_TRUE(std::equal(h_sol.begin(), h_sol.end(), res.begin()));
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user