Implementation of hinge loss for binary classification (#3477)

This commit is contained in:
Henry Gouk 2018-08-07 10:06:42 +12:00 committed by Rory Mitchell
parent 44811f2330
commit 69454d9487
5 changed files with 94 additions and 0 deletions

View File

@ -20,6 +20,7 @@
#include "../src/objective/regression_obj.cc"
#include "../src/objective/multiclass_obj.cc"
#include "../src/objective/rank_obj.cc"
#include "../src/objective/hinge.cc"
// gbms
#include "../src/gbm/gbm.cc"

View File

@ -248,6 +248,7 @@ Specify the learning task and the corresponding learning objective. The objectiv
- ``reg:logistic``: logistic regression
- ``binary:logistic``: logistic regression for binary classification, output probability
- ``binary:logitraw``: logistic regression for binary classification, output score before logistic transformation
- ``binary:hinge``: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
- ``gpu:reg:linear``, ``gpu:reg:logistic``, ``gpu:binary:logistic``, ``gpu:binary:logitraw``: versions
of the corresponding objective functions evaluated on the GPU; note that like the GPU histogram algorithm,
they can only be used when the entire training session uses the same dataset

71
src/objective/hinge.cc Normal file
View File

@ -0,0 +1,71 @@
/*!
* Copyright 2018 by Contributors
* \file hinge.cc
* \brief Provides an implementation of the hinge loss function
* \author Henry Gouk
*/
#include <xgboost/objective.h>
#include "../common/math.h"
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(hinge);
class HingeObj : public ObjFunction {
public:
HingeObj() = default;
void Configure(
const std::vector<std::pair<std::string, std::string> > &args) override {
// This objective does not take any parameters
}
void GetGradient(HostDeviceVector<bst_float> *preds,
const MetaInfo &info,
int iter,
HostDeviceVector<GradientPair> *out_gpair) override {
CHECK_NE(info.labels_.size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds->Size(), info.labels_.size())
<< "labels are not correctly provided"
<< "preds.size=" << preds->Size()
<< ", label.size=" << info.labels_.size();
auto& preds_h = preds->HostVector();
out_gpair->Resize(preds_h.size());
auto& gpair = out_gpair->HostVector();
for (size_t i = 0; i < preds_h.size(); ++i) {
auto y = info.labels_[i] * 2.0 - 1.0;
bst_float p = preds_h[i];
bst_float w = info.GetWeight(i);
bst_float g, h;
if (p * y < 1.0) {
g = -y * w;
h = w;
} else {
g = 0.0;
h = std::numeric_limits<bst_float>::min();
}
gpair[i] = GradientPair(g, h);
}
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = io_preds->HostVector();
for (auto& p : preds) {
p = p > 0.0 ? 1.0 : 0.0;
}
}
const char* DefaultEvalMetric() const override {
return "error";
}
};
XGBOOST_REGISTER_OBJECTIVE(HingeObj, "binary:hinge")
.describe("Hinge loss. Expects labels to be in [0,1f]")
.set_body([]() { return new HingeObj(); });
} // namespace obj
} // namespace xgboost

View File

@ -36,5 +36,6 @@ DMLC_REGISTRY_LINK_TAG(regression_obj);
#endif
DMLC_REGISTRY_LINK_TAG(multiclass_obj);
DMLC_REGISTRY_LINK_TAG(rank_obj);
DMLC_REGISTRY_LINK_TAG(hinge);
} // namespace obj
} // namespace xgboost

View File

@ -0,0 +1,20 @@
// Copyright by Contributors
#include <xgboost/objective.h>
#include <limits>
#include "../helpers.h"
TEST(Objective, HingeObj) {
xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("binary:hinge");
std::vector<std::pair<std::string, std::string> > args;
obj->Configure(args);
xgboost::bst_float eps = std::numeric_limits<xgboost::bst_float>::min();
CheckObjFunction(obj,
{-1.0f, -0.5f, 0.5f, 1.0f, -1.0f, -0.5f, 0.5f, 1.0f},
{ 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
{ 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f},
{ 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 0.0f},
{ eps, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, eps });
ASSERT_NO_THROW(obj->DefaultEvalMetric());
}