add poisson regression

This commit is contained in:
tqchen 2015-05-04 10:48:25 -07:00
parent a310db86a1
commit 667a752e04
10 changed files with 144 additions and 24 deletions

View File

@ -28,13 +28,13 @@ extern "C" {
void (*Check)(int exp, const char *fmt, ...) = XGBoostCheck_R;
void (*Error)(const char *fmt, ...) = error;
}
} // namespace utils
namespace wrapper {
bool CheckNAN(float v) {
bool CheckNAN(double v) {
return ISNAN(v);
}
} // namespace wrapper
bool LogGamma(double v) {
return lgammafn(v);
}
} // namespace utils
namespace random {
void Seed(unsigned seed) {

View File

@ -8,6 +8,7 @@
extern "C" {
#include <Rinternals.h>
#include <R_ext/Random.h>
#include <Rmath.h>
}
extern "C" {

View File

@ -55,6 +55,8 @@ From xgboost-unity, the ```bst:``` prefix is no longer needed for booster parame
- "reg:logistic" --logistic regression
- "binary:logistic" --logistic regression for binary classification, output probability
- "binary:logitraw" --logistic regression for binary classification, output score before logistic transformation
- "count:poisson" --poisson regression for count data, output mean of poisson distribution
- max_delta_step is set to 1 by default in poisson regression(used to safeguard optimization)
- "multi:softmax" --set XGBoost to do multiclass classification using the softmax objective, you also need to set num_class(number of classes)
- "multi:softprob" --same as softmax, but output a vector of ndata * nclass, which can be further reshaped to ndata, nclass matrix. The result contains predicted probability of each data point belonging to each class.
- "rank:pairwise" --set XGBoost to do ranking task by minimizing the pairwise loss

View File

@ -12,6 +12,7 @@
#include <climits>
#include <algorithm>
#include "../sync/sync.h"
#include "../utils/math.h"
#include "./evaluation.h"
#include "./helper_utils.h"
@ -106,6 +107,18 @@ struct EvalError : public EvalEWiseBase<EvalError> {
}
};
/*! \brief loglikelihood of poission distribution */
struct EvalPoissionNegLogLik : public EvalEWiseBase<EvalPoissionNegLogLik> {
virtual const char *Name(void) const {
return "poisson-nloglik";
}
inline static float EvalRow(float y, float py) {
const float eps = 1e-16f;
if (py < eps) py = eps;
return utils::LogGamma(y + 1.0f) + py - std::log(py) * y;
}
};
/*!
* \brief base class of multi-class evaluation
* \tparam Derived the name of subclass

View File

@ -46,6 +46,7 @@ inline IEvaluator* CreateEvaluator(const char *name) {
if (!strcmp(name, "merror")) return new EvalMatchError();
if (!strcmp(name, "logloss")) return new EvalLogLoss();
if (!strcmp(name, "mlogloss")) return new EvalMultiLogLoss();
if (!strcmp(name, "poisson-nloglik")) return new EvalPoissionNegLogLik();
if (!strcmp(name, "auc")) return new EvalAuc();
if (!strncmp(name, "ams@", 4)) return new EvalAMS(name);
if (!strncmp(name, "pre@", 4)) return new EvalPrecision(name);

View File

@ -107,7 +107,9 @@ class BoostLearner : public rabit::Serializable {
}
if (!strcmp("seed_per_iter", name)) seed_per_iteration = atoi(val);
if (!strcmp("save_base64", name)) save_base64 = atoi(val);
if (!strcmp(name, "num_class")) this->SetParam("num_output_group", val);
if (!strcmp(name, "num_class")) {
this->SetParam("num_output_group", val);
}
if (!strcmp(name, "nthread")) {
omp_set_num_threads(atoi(val));
}
@ -383,7 +385,8 @@ class BoostLearner : public rabit::Serializable {
utils::Assert(gbm_ == NULL, "GBM and obj should be NULL");
obj_ = CreateObjFunction(name_obj_.c_str());
gbm_ = gbm::CreateGradBooster(name_gbm_.c_str());
this->InitAdditionDefaultParam();
// set parameters
for (size_t i = 0; i < cfg_.size(); ++i) {
obj_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
gbm_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
@ -392,6 +395,15 @@ class BoostLearner : public rabit::Serializable {
evaluator_.AddEval(obj_->DefaultEvalMetric());
}
}
/*!
* \brief additional default value for specific objs
*/
inline void InitAdditionDefaultParam(void) {
if (name_obj_ == "count:poisson") {
obj_->SetParam("max_delta_step", "0.7");
gbm_->SetParam("max_delta_step", "0.7");
}
}
/*!
* \brief get un-transformed prediction
* \param data training data matrix

View File

@ -114,7 +114,7 @@ struct LossType {
};
/*! \brief objective function that only need to */
class RegLossObj : public IObjFunction{
class RegLossObj : public IObjFunction {
public:
explicit RegLossObj(int loss_type) {
loss.loss_type = loss_type;
@ -173,6 +173,72 @@ class RegLossObj : public IObjFunction{
LossType loss;
};
// poisson regression for count
class PoissonRegression : public IObjFunction {
public:
explicit PoissonRegression(void) {
max_delta_step = 0.0f;
}
virtual ~PoissonRegression(void) {}
virtual void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp( "max_delta_step", name )) {
max_delta_step = static_cast<float>(atof(val));
}
}
virtual void GetGradient(const std::vector<float> &preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) {
utils::Check(max_delta_step != 0.0f,
"PoissonRegression: need to set max_delta_step");
utils::Check(info.labels.size() != 0, "label set cannot be empty");
utils::Check(preds.size() == info.labels.size(),
"labels are not correctly provided");
std::vector<bst_gpair> &gpair = *out_gpair;
gpair.resize(preds.size());
// check if label in range
bool label_correct = true;
// start calculating gradient
const long ndata = static_cast<bst_omp_uint>(preds.size());
#pragma omp parallel for schedule(static)
for (long i = 0; i < ndata; ++i) {
float p = preds[i];
float w = info.GetWeight(i);
float y = info.labels[i];
if (y >= 0.0f) {
gpair[i] = bst_gpair((std::exp(p) - y) * w,
std::exp(p + max_delta_step) * w);
} else {
label_correct = false;
}
}
utils::Check(label_correct,
"PoissonRegression: label must be nonnegative");
}
virtual void PredTransform(std::vector<float> *io_preds) {
std::vector<float> &preds = *io_preds;
const long ndata = static_cast<long>(preds.size());
#pragma omp parallel for schedule(static)
for (long j = 0; j < ndata; ++j) {
preds[j] = std::exp(preds[j]);
}
}
virtual void EvalTransform(std::vector<float> *io_preds) {
PredTransform(io_preds);
}
virtual float ProbToMargin(float base_score) const {
return std::log(base_score);
}
virtual const char* DefaultEvalMetric(void) const {
return "poisson-nloglik";
}
private:
float max_delta_step;
};
// softmax multi-class classification
class SoftmaxMultiClassObj : public IObjFunction {
public:

View File

@ -72,6 +72,7 @@ inline IObjFunction* CreateObjFunction(const char *name) {
if (!strcmp("reg:logistic", name)) return new RegLossObj(LossType::kLogisticNeglik);
if (!strcmp("binary:logistic", name)) return new RegLossObj(LossType::kLogisticClassify);
if (!strcmp("binary:logitraw", name)) return new RegLossObj(LossType::kLogisticRaw);
if (!strcmp("count:poisson", name)) return new PoissonRegression();
if (!strcmp("multi:softmax", name)) return new SoftmaxMultiClassObj(0);
if (!strcmp("multi:softprob", name)) return new SoftmaxMultiClassObj(1);
if (!strcmp("rank:pairwise", name )) return new PairwiseRankObj();

36
src/utils/math.h Normal file
View File

@ -0,0 +1,36 @@
#ifndef XGBOOST_UTILS_MATH_H_
#define XGBOOST_UTILS_MATH_H_
/*!
* \file math.h
* \brief support additional math
* \author Tianqi Chen
*/
#include <cmath>
#ifdef _MSC_VER
extern "C" {
#include <amp_math.h>
}
#endif
namespace xgboost {
namespace utils {
#ifdef XGBOOST_STRICT_CXX98_
// check nan
bool CheckNAN(double v);
double LogGamma(double v);
#else
template<typename T>
inline bool CheckNAN(T v) {
#ifdef _MSC_VER
return (_isnan(x) != 0);
#else
return isnan(v);
#endif
}
template<typename T>
inline T LogGamma(T v) {
return lgamma(v);
}
#endif
} // namespace utils
} // namespace xgboost
#endif // XGBOOST_UTILS_MATH_H_

View File

@ -9,16 +9,12 @@
#include <algorithm>
// include all std functions
using namespace std;
#ifdef _MSC_VER
#define isnan(x) (_isnan(x) != 0)
#endif
#include "./xgboost_wrapper.h"
#include "../src/data.h"
#include "../src/learner/learner-inl.hpp"
#include "../src/io/io.h"
#include "../src/utils/utils.h"
#include "../src/utils/math.h"
#include "../src/utils/group_data.h"
#include "../src/io/simple_dmatrix-inl.hpp"
@ -97,14 +93,6 @@ class Booster: public learner::BoostLearner {
private:
bool init_model;
};
#if !defined(XGBOOST_STRICT_CXX98_)
inline bool CheckNAN(float v) {
return isnan(v);
}
#else
// redirect to defs in R
bool CheckNAN(float v);
#endif
} // namespace wrapper
} // namespace xgboost
@ -175,7 +163,7 @@ extern "C"{
bst_ulong nrow,
bst_ulong ncol,
float missing) {
bool nan_missing = CheckNAN(missing);
bool nan_missing = utils::CheckNAN(missing);
DMatrixSimple *p_mat = new DMatrixSimple();
DMatrixSimple &mat = *p_mat;
mat.info.info.num_row = nrow;
@ -183,7 +171,7 @@ extern "C"{
for (bst_ulong i = 0; i < nrow; ++i, data += ncol) {
bst_ulong nelem = 0;
for (bst_ulong j = 0; j < ncol; ++j) {
if (CheckNAN(data[j])) {
if (utils::CheckNAN(data[j])) {
utils::Check(nan_missing,
"There are NAN in the matrix, however, you did not set missing=NAN");
} else {