[jvm-packages] add format option when saving a model (#7940)
This commit is contained in:
parent
cc6d57aa0d
commit
6275cdc486
@ -30,6 +30,8 @@ import org.apache.spark.sql.functions._
|
||||
import org.json4s.DefaultFormats
|
||||
import scala.collection.{Iterator, mutable}
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.spark.utils.XGBoostWriter
|
||||
|
||||
import org.apache.spark.sql.types.StructType
|
||||
|
||||
class XGBoostClassifier (
|
||||
@ -462,7 +464,8 @@ object XGBoostClassificationModel extends MLReadable[XGBoostClassificationModel]
|
||||
override def load(path: String): XGBoostClassificationModel = super.load(path)
|
||||
|
||||
private[XGBoostClassificationModel]
|
||||
class XGBoostClassificationModelWriter(instance: XGBoostClassificationModel) extends MLWriter {
|
||||
class XGBoostClassificationModelWriter(instance: XGBoostClassificationModel)
|
||||
extends XGBoostWriter {
|
||||
|
||||
override protected def saveImpl(path: String): Unit = {
|
||||
// Save metadata and Params
|
||||
@ -474,7 +477,7 @@ object XGBoostClassificationModel extends MLReadable[XGBoostClassificationModel]
|
||||
val dataPath = new Path(path, "data").toString
|
||||
val internalPath = new Path(dataPath, "XGBoostClassificationModel")
|
||||
val outputStream = internalPath.getFileSystem(sc.hadoopConfiguration).create(internalPath)
|
||||
instance._booster.saveModel(outputStream)
|
||||
instance._booster.saveModel(outputStream, getModelFormat())
|
||||
outputStream.close()
|
||||
}
|
||||
}
|
||||
|
||||
@ -19,6 +19,7 @@ package ml.dmlc.xgboost4j.scala.spark
|
||||
import scala.collection.{Iterator, mutable}
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.spark.params.{DefaultXGBoostParamsReader, _}
|
||||
import ml.dmlc.xgboost4j.scala.spark.utils.XGBoostWriter
|
||||
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix, XGBoost => SXGBoost}
|
||||
import ml.dmlc.xgboost4j.scala.{EvalTrait, ObjectiveTrait}
|
||||
import org.apache.hadoop.fs.Path
|
||||
@ -379,7 +380,7 @@ object XGBoostRegressionModel extends MLReadable[XGBoostRegressionModel] {
|
||||
override def load(path: String): XGBoostRegressionModel = super.load(path)
|
||||
|
||||
private[XGBoostRegressionModel]
|
||||
class XGBoostRegressionModelWriter(instance: XGBoostRegressionModel) extends MLWriter {
|
||||
class XGBoostRegressionModelWriter(instance: XGBoostRegressionModel) extends XGBoostWriter {
|
||||
|
||||
override protected def saveImpl(path: String): Unit = {
|
||||
// Save metadata and Params
|
||||
@ -390,7 +391,7 @@ object XGBoostRegressionModel extends MLReadable[XGBoostRegressionModel] {
|
||||
val dataPath = new Path(path, "data").toString
|
||||
val internalPath = new Path(dataPath, "XGBoostRegressionModel")
|
||||
val outputStream = internalPath.getFileSystem(sc.hadoopConfiguration).create(internalPath)
|
||||
instance._booster.saveModel(outputStream)
|
||||
instance._booster.saveModel(outputStream, getModelFormat())
|
||||
outputStream.close()
|
||||
}
|
||||
}
|
||||
|
||||
@ -0,0 +1,31 @@
|
||||
/*
|
||||
Copyright (c) 2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark.utils
|
||||
|
||||
import ml.dmlc.xgboost4j.java.{Booster => JBooster}
|
||||
|
||||
import org.apache.spark.ml.util.MLWriter
|
||||
|
||||
private[spark] abstract class XGBoostWriter extends MLWriter {
|
||||
|
||||
/** Currently it's using the "deprecated" format as
|
||||
* default, which will be changed into `ubj` in future releases. */
|
||||
def getModelFormat(): String = {
|
||||
optionMap.getOrElse("format", JBooster.DEFAULT_FORMAT)
|
||||
}
|
||||
|
||||
}
|
||||
@ -16,16 +16,18 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import java.io.File
|
||||
import java.io.{File, FileInputStream}
|
||||
|
||||
import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
|
||||
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.{BeforeAndAfterEach, FunSuite}
|
||||
|
||||
import scala.math.min
|
||||
import scala.util.Random
|
||||
|
||||
import org.apache.commons.io.IOUtils
|
||||
|
||||
trait PerTest extends BeforeAndAfterEach { self: FunSuite =>
|
||||
|
||||
protected val numWorkers: Int = min(Runtime.getRuntime.availableProcessors(), 4)
|
||||
@ -105,4 +107,22 @@ trait PerTest extends BeforeAndAfterEach { self: FunSuite =>
|
||||
ss.createDataFrame(sc.parallelize(it.toList, numPartitions))
|
||||
.toDF("id", "label", "features", "group")
|
||||
}
|
||||
|
||||
|
||||
protected def compareTwoFiles(lhs: String, rhs: String): Boolean = {
|
||||
withResource(new FileInputStream(lhs)) { lfis =>
|
||||
withResource(new FileInputStream(rhs)) { rfis =>
|
||||
IOUtils.contentEquals(lfis, rfis)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Executes the provided code block and then closes the resource */
|
||||
protected def withResource[T <: AutoCloseable, V](r: T)(block: T => V): V = {
|
||||
try {
|
||||
block(r)
|
||||
} finally {
|
||||
r.close()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -429,30 +429,29 @@ class XGBoostClassifierSuite extends FunSuite with PerTest with TmpFolderPerSuit
|
||||
val trainingDF = buildDataFrame(MultiClassification.train)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
val model = xgb.fit(trainingDF)
|
||||
|
||||
val modelPath = new File(tempDir.toFile, "xgbc").getPath
|
||||
model.write.overwrite().save(modelPath)
|
||||
val nativeModelPath = new File(tempDir.toFile, "nativeModel").getPath
|
||||
model.nativeBooster.saveModel(nativeModelPath)
|
||||
|
||||
model.write.option("format", "json").save(modelPath)
|
||||
val nativeJsonModelPath = new File(tempDir.toFile, "nativeModel.json").getPath
|
||||
model.nativeBooster.saveModel(nativeJsonModelPath)
|
||||
assert(compareTwoFiles(new File(modelPath, "data/XGBoostClassificationModel").getPath,
|
||||
nativeModelPath))
|
||||
}
|
||||
nativeJsonModelPath))
|
||||
|
||||
private def compareTwoFiles(lhs: String, rhs: String): Boolean = {
|
||||
withResource(new FileInputStream(lhs)) { lfis =>
|
||||
withResource(new FileInputStream(rhs)) { rfis =>
|
||||
IOUtils.contentEquals(lfis, rfis)
|
||||
}
|
||||
}
|
||||
}
|
||||
// test default "deprecated"
|
||||
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
||||
model.write.save(modelUbjPath)
|
||||
val nativeDeprecatedModelPath = new File(tempDir.toFile, "nativeModel").getPath
|
||||
model.nativeBooster.saveModel(nativeDeprecatedModelPath)
|
||||
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostClassificationModel").getPath,
|
||||
nativeDeprecatedModelPath))
|
||||
|
||||
/** Executes the provided code block and then closes the resource */
|
||||
private def withResource[T <: AutoCloseable, V](r: T)(block: T => V): V = {
|
||||
try {
|
||||
block(r)
|
||||
} finally {
|
||||
r.close()
|
||||
}
|
||||
// json file should be indifferent with ubj file
|
||||
val modelJsonPath = new File(tempDir.toFile, "xgbcJson").getPath
|
||||
model.write.option("format", "json").save(modelJsonPath)
|
||||
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel1.ubj").getPath
|
||||
model.nativeBooster.saveModel(nativeUbjModelPath)
|
||||
assert(!compareTwoFiles(new File(modelJsonPath, "data/XGBoostClassificationModel").getPath,
|
||||
nativeUbjModelPath))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -16,6 +16,8 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import java.io.File
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
|
||||
|
||||
import org.apache.spark.ml.linalg.{Vector, Vectors}
|
||||
@ -25,7 +27,7 @@ import org.scalatest.FunSuite
|
||||
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
|
||||
class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
class XGBoostRegressorSuite extends FunSuite with PerTest with TmpFolderPerSuite {
|
||||
protected val treeMethod: String = "auto"
|
||||
|
||||
test("XGBoost-Spark XGBoostRegressor output should match XGBoost4j") {
|
||||
@ -310,4 +312,42 @@ class XGBoostRegressorSuite extends FunSuite with PerTest {
|
||||
val df1 = model.transform(vectorizedInput)
|
||||
df1.show()
|
||||
}
|
||||
|
||||
test("XGBoostRegressionModel should be compatible") {
|
||||
val trainingDF = buildDataFrame(Regression.train)
|
||||
val paramMap = Map(
|
||||
"eta" -> "1",
|
||||
"max_depth" -> "6",
|
||||
"silent" -> "1",
|
||||
"objective" -> "reg:squarederror",
|
||||
"num_round" -> 5,
|
||||
"tree_method" -> treeMethod,
|
||||
"num_workers" -> numWorkers)
|
||||
|
||||
val model = new XGBoostRegressor(paramMap).fit(trainingDF)
|
||||
|
||||
val modelPath = new File(tempDir.toFile, "xgbc").getPath
|
||||
model.write.option("format", "json").save(modelPath)
|
||||
val nativeJsonModelPath = new File(tempDir.toFile, "nativeModel.json").getPath
|
||||
model.nativeBooster.saveModel(nativeJsonModelPath)
|
||||
assert(compareTwoFiles(new File(modelPath, "data/XGBoostRegressionModel").getPath,
|
||||
nativeJsonModelPath))
|
||||
|
||||
// test default "deprecated"
|
||||
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
||||
model.write.save(modelUbjPath)
|
||||
val nativeDeprecatedModelPath = new File(tempDir.toFile, "nativeModel").getPath
|
||||
model.nativeBooster.saveModel(nativeDeprecatedModelPath)
|
||||
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostRegressionModel").getPath,
|
||||
nativeDeprecatedModelPath))
|
||||
|
||||
// json file should be indifferent with ubj file
|
||||
val modelJsonPath = new File(tempDir.toFile, "xgbcJson").getPath
|
||||
model.write.option("format", "json").save(modelJsonPath)
|
||||
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel1.ubj").getPath
|
||||
model.nativeBooster.saveModel(nativeUbjModelPath)
|
||||
assert(!compareTwoFiles(new File(modelJsonPath, "data/XGBoostRegressionModel").getPath,
|
||||
nativeUbjModelPath))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -34,6 +34,7 @@ import org.apache.commons.logging.LogFactory;
|
||||
* Booster for xgboost, this is a model API that support interactive build of a XGBoost Model
|
||||
*/
|
||||
public class Booster implements Serializable, KryoSerializable {
|
||||
public static final String DEFAULT_FORMAT = "deprecated";
|
||||
private static final Log logger = LogFactory.getLog(Booster.class);
|
||||
// handle to the booster.
|
||||
private long handle = 0;
|
||||
@ -391,7 +392,22 @@ public class Booster implements Serializable, KryoSerializable {
|
||||
* @param out The output stream
|
||||
*/
|
||||
public void saveModel(OutputStream out) throws XGBoostError, IOException {
|
||||
out.write(this.toByteArray());
|
||||
saveModel(out, DEFAULT_FORMAT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Save the model to file opened as output stream.
|
||||
* The model format is compatible with other xgboost bindings.
|
||||
* The output stream can only save one xgboost model.
|
||||
* This function will close the OutputStream after the save.
|
||||
*
|
||||
* @param out The output stream
|
||||
* @param format The model format (ubj, json, deprecated)
|
||||
* @throws XGBoostError
|
||||
* @throws IOException
|
||||
*/
|
||||
public void saveModel(OutputStream out, String format) throws XGBoostError, IOException {
|
||||
out.write(this.toByteArray(format));
|
||||
out.close();
|
||||
}
|
||||
|
||||
@ -643,7 +659,7 @@ public class Booster implements Serializable, KryoSerializable {
|
||||
* @throws XGBoostError native error
|
||||
*/
|
||||
public byte[] toByteArray() throws XGBoostError {
|
||||
return this.toByteArray("deprecated");
|
||||
return this.toByteArray(DEFAULT_FORMAT);
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -207,6 +207,7 @@ class Booster private[xgboost4j](private[xgboost4j] var booster: JBooster)
|
||||
def saveModel(modelPath: String): Unit = {
|
||||
booster.saveModel(modelPath)
|
||||
}
|
||||
|
||||
/**
|
||||
* save model to Output stream
|
||||
*
|
||||
@ -216,6 +217,18 @@ class Booster private[xgboost4j](private[xgboost4j] var booster: JBooster)
|
||||
def saveModel(out: java.io.OutputStream): Unit = {
|
||||
booster.saveModel(out)
|
||||
}
|
||||
|
||||
/**
|
||||
* save model to Output stream
|
||||
* @param out output stream
|
||||
* @param format the supported model format, (json, ubj, deprecated)
|
||||
* @throws ml.dmlc.xgboost4j.java.XGBoostError
|
||||
*/
|
||||
@throws(classOf[XGBoostError])
|
||||
def saveModel(out: java.io.OutputStream, format: String): Unit = {
|
||||
booster.saveModel(out, format)
|
||||
}
|
||||
|
||||
/**
|
||||
* Dump model as Array of string
|
||||
*
|
||||
@ -315,7 +328,7 @@ class Booster private[xgboost4j](private[xgboost4j] var booster: JBooster)
|
||||
*/
|
||||
@throws(classOf[XGBoostError])
|
||||
def toByteArray: Array[Byte] = {
|
||||
booster.toByteArray
|
||||
booster.toByteArray()
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user