[SYCL] Add split evaluation (#10119)

---------

Co-authored-by: Dmitry Razdoburdin <>
This commit is contained in:
Dmitry Razdoburdin 2024-03-14 18:46:46 +01:00 committed by GitHub
parent e0f890ba28
commit 617970a0c2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 397 additions and 0 deletions

55
plugin/sycl/tree/param.h Normal file
View File

@ -0,0 +1,55 @@
/*!
* Copyright 2014-2024 by Contributors
*/
#ifndef PLUGIN_SYCL_TREE_PARAM_H_
#define PLUGIN_SYCL_TREE_PARAM_H_
#include <cmath>
#include <cstring>
#include <limits>
#include <string>
#include <vector>
#include "xgboost/parameter.h"
#include "xgboost/data.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../src/tree/param.h"
#pragma GCC diagnostic pop
#include <CL/sycl.hpp>
namespace xgboost {
namespace sycl {
namespace tree {
/*! \brief Wrapper for necessary training parameters for regression tree to access on device */
/* The original structure xgboost::tree::TrainParam can't be used,
* since std::vector are not copyable on sycl-devices.
*/
struct TrainParam {
float min_child_weight;
float reg_lambda;
float reg_alpha;
float max_delta_step;
TrainParam() {}
explicit TrainParam(const xgboost::tree::TrainParam& param) {
reg_lambda = param.reg_lambda;
reg_alpha = param.reg_alpha;
min_child_weight = param.min_child_weight;
max_delta_step = param.max_delta_step;
}
};
template <typename GradType>
using GradStats = xgboost::detail::GradientPairInternal<GradType>;
} // namespace tree
} // namespace sycl
} // namespace xgboost
#endif // PLUGIN_SYCL_TREE_PARAM_H_

View File

@ -0,0 +1,208 @@
/*!
* Copyright 2018-2024 by Contributors
*/
#ifndef PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_
#define PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_
#include <dmlc/registry.h>
#include <xgboost/base.h>
#include <utility>
#include <vector>
#include <limits>
#include "param.h"
#include "../data.h"
#include "xgboost/tree_model.h"
#include "xgboost/host_device_vector.h"
#include "xgboost/context.h"
#include "../../src/common/transform.h"
#include "../../src/common/math.h"
#include "../../src/tree/param.h"
#include <CL/sycl.hpp>
namespace xgboost {
namespace sycl {
namespace tree {
/*! \brief SYCL implementation of TreeEvaluator, with USM memory for temporary buffer to access on device.
* It also contains own implementation of SplitEvaluator for device compilation, because some of the
functions from the original SplitEvaluator are currently not supported
*/
template<typename GradType>
class TreeEvaluator {
// hist and exact use parent id to calculate constraints.
static constexpr bst_node_t kRootParentId =
(-1 & static_cast<bst_node_t>((1U << 31) - 1));
USMVector<GradType> lower_bounds_;
USMVector<GradType> upper_bounds_;
USMVector<int> monotone_;
TrainParam param_;
::sycl::queue qu_;
bool has_constraint_;
public:
void Reset(::sycl::queue qu, xgboost::tree::TrainParam const& p, bst_feature_t n_features) {
qu_ = qu;
has_constraint_ = false;
for (const auto& constraint : p.monotone_constraints) {
if (constraint != 0) {
has_constraint_ = true;
break;
}
}
if (has_constraint_) {
monotone_.Resize(&qu_, n_features, 0);
qu_.memcpy(monotone_.Data(), p.monotone_constraints.data(),
sizeof(int) * p.monotone_constraints.size());
qu_.wait();
lower_bounds_.Resize(&qu_, p.MaxNodes(), std::numeric_limits<GradType>::lowest());
upper_bounds_.Resize(&qu_, p.MaxNodes(), std::numeric_limits<GradType>::max());
}
param_ = TrainParam(p);
}
bool HasConstraint() const {
return has_constraint_;
}
TreeEvaluator(::sycl::queue qu, xgboost::tree::TrainParam const& p, bst_feature_t n_features) {
Reset(qu, p, n_features);
}
struct SplitEvaluator {
const int* constraints;
const GradType* lower;
const GradType* upper;
bool has_constraint;
TrainParam param;
GradType CalcSplitGain(bst_node_t nidx,
bst_feature_t fidx,
const GradStats<GradType>& left,
const GradStats<GradType>& right) const {
const GradType negative_infinity = -std::numeric_limits<GradType>::infinity();
GradType wleft = this->CalcWeight(nidx, left);
GradType wright = this->CalcWeight(nidx, right);
GradType gain = this->CalcGainGivenWeight(nidx, left, wleft) +
this->CalcGainGivenWeight(nidx, right, wright);
if (!has_constraint) {
return gain;
}
int constraint = constraints[fidx];
if (constraint == 0) {
return gain;
} else if (constraint > 0) {
return wleft <= wright ? gain : negative_infinity;
} else {
return wleft >= wright ? gain : negative_infinity;
}
}
inline static GradType ThresholdL1(GradType w, float alpha) {
if (w > + alpha) {
return w - alpha;
}
if (w < - alpha) {
return w + alpha;
}
return 0.0;
}
inline GradType CalcWeight(GradType sum_grad, GradType sum_hess) const {
if (sum_hess < param.min_child_weight || sum_hess <= 0.0) {
return 0.0;
}
GradType dw = -this->ThresholdL1(sum_grad, param.reg_alpha) / (sum_hess + param.reg_lambda);
if (param.max_delta_step != 0.0f && std::abs(dw) > param.max_delta_step) {
dw = ::sycl::copysign((GradType)param.max_delta_step, dw);
}
return dw;
}
inline GradType CalcWeight(bst_node_t nodeid, const GradStats<GradType>& stats) const {
GradType w = this->CalcWeight(stats.GetGrad(), stats.GetHess());
if (!has_constraint) {
return w;
}
if (nodeid == kRootParentId) {
return w;
} else if (w < lower[nodeid]) {
return lower[nodeid];
} else if (w > upper[nodeid]) {
return upper[nodeid];
} else {
return w;
}
}
inline GradType CalcGainGivenWeight(GradType sum_grad, GradType sum_hess, GradType w) const {
return -(2.0f * sum_grad * w + (sum_hess + param.reg_lambda) * xgboost::common::Sqr(w));
}
inline GradType CalcGainGivenWeight(bst_node_t nid, const GradStats<GradType>& stats,
GradType w) const {
if (stats.GetHess() <= 0) {
return .0f;
}
// Avoiding tree::CalcGainGivenWeight can significantly reduce avg floating point error.
if (param.max_delta_step == 0.0f && has_constraint == false) {
return xgboost::common::Sqr(this->ThresholdL1(stats.GetGrad(), param.reg_alpha)) /
(stats.GetHess() + param.reg_lambda);
}
return this->CalcGainGivenWeight(stats.GetGrad(), stats.GetHess(), w);
}
GradType CalcGain(bst_node_t nid, const GradStats<GradType>& stats) const {
return this->CalcGainGivenWeight(nid, stats, this->CalcWeight(nid, stats));
}
};
public:
/* Get a view to the evaluator that can be passed down to device. */
auto GetEvaluator() const {
return SplitEvaluator{monotone_.DataConst(),
lower_bounds_.DataConst(),
upper_bounds_.DataConst(),
has_constraint_,
param_};
}
void AddSplit(bst_node_t nodeid, bst_node_t leftid, bst_node_t rightid,
bst_feature_t f, GradType left_weight, GradType right_weight) {
if (!has_constraint_) {
return;
}
lower_bounds_[leftid] = lower_bounds_[nodeid];
upper_bounds_[leftid] = upper_bounds_[nodeid];
lower_bounds_[rightid] = lower_bounds_[nodeid];
upper_bounds_[rightid] = upper_bounds_[nodeid];
int32_t c = monotone_[f];
GradType mid = (left_weight + right_weight) / 2;
if (c < 0) {
lower_bounds_[leftid] = mid;
upper_bounds_[rightid] = mid;
} else if (c > 0) {
upper_bounds_[leftid] = mid;
lower_bounds_[rightid] = mid;
}
}
};
} // namespace tree
} // namespace sycl
} // namespace xgboost
#endif // PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_

View File

@ -0,0 +1,134 @@
/**
* Copyright 2020-2024 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <vector>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include "../../../plugin/sycl/tree/split_evaluator.h"
#pragma GCC diagnostic pop
#include "../../../plugin/sycl/device_manager.h"
#include "../helpers.h"
namespace xgboost::sycl::tree {
template<typename GradientSumT>
void BasicTestSplitEvaluator(const std::string& monotone_constraints, bool has_constrains) {
const size_t n_columns = 2;
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"},
{"reg_lambda", "0"},
{"monotone_constraints", monotone_constraints}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(DeviceOrd::SyclDefault());
TreeEvaluator<GradientSumT> tree_evaluator(qu, param, n_columns);
{
// Check correctness of has_constrains flag
ASSERT_EQ(tree_evaluator.HasConstraint(), has_constrains);
}
auto split_evaluator = tree_evaluator.GetEvaluator();
{
// Check if params were inititialised correctly
ASSERT_EQ(split_evaluator.param.min_child_weight, param.min_child_weight);
ASSERT_EQ(split_evaluator.param.reg_lambda, param.reg_lambda);
ASSERT_EQ(split_evaluator.param.reg_alpha, param.reg_alpha);
ASSERT_EQ(split_evaluator.param.max_delta_step, param.max_delta_step);
}
}
template<typename GradientSumT>
void TestSplitEvaluator(const std::string& monotone_constraints) {
const size_t n_columns = 2;
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"},
{"reg_lambda", "0"},
{"monotone_constraints", monotone_constraints}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(DeviceOrd::SyclDefault());
TreeEvaluator<GradientSumT> tree_evaluator(qu, param, n_columns);
auto split_evaluator = tree_evaluator.GetEvaluator();
{
// Test ThresholdL1
const GradientSumT alpha = 0.5;
{
const GradientSumT val = 0.0;
const auto trh = split_evaluator.ThresholdL1(val, alpha);
ASSERT_EQ(trh, 0.0);
}
{
const GradientSumT val = 1.0;
const auto trh = split_evaluator.ThresholdL1(val, alpha);
ASSERT_EQ(trh, val - alpha);
}
{
const GradientSumT val = -1.0;
const auto trh = split_evaluator.ThresholdL1(val, alpha);
ASSERT_EQ(trh, val + alpha);
}
}
{
constexpr float eps = 1e-8;
tree_evaluator.AddSplit(0, 1, 2, 0, 0.3, 0.7);
GradStats<GradientSumT> left(0.1, 0.2);
GradStats<GradientSumT> right(0.3, 0.4);
bst_node_t nidx = 0;
bst_feature_t fidx = 0;
GradientSumT wleft = split_evaluator.CalcWeight(nidx, left);
// wleft = -grad/hess = -0.1/0.2
EXPECT_NEAR(wleft, -0.5, eps);
GradientSumT wright = split_evaluator.CalcWeight(nidx, right);
// wright = -grad/hess = -0.3/0.4
EXPECT_NEAR(wright, -0.75, eps);
GradientSumT gweight_left = split_evaluator.CalcGainGivenWeight(nidx, left, wleft);
// gweight_left = left.grad**2 / left.hess = 0.1*0.1/0.2 = 0.05
EXPECT_NEAR(gweight_left, 0.05, eps);
// gweight_left = right.grad**2 / right.hess = 0.3*0.3/0.4 = 0.225
GradientSumT gweight_right = split_evaluator.CalcGainGivenWeight(nidx, right, wright);
EXPECT_NEAR(gweight_right, 0.225, eps);
GradientSumT split_gain = split_evaluator.CalcSplitGain(nidx, fidx, left, right);
if (!tree_evaluator.HasConstraint()) {
EXPECT_NEAR(split_gain, gweight_left + gweight_right, eps);
} else {
// Parameters are chosen to have -inf here
ASSERT_EQ(split_gain, -std::numeric_limits<GradientSumT>::infinity());
}
}
}
TEST(SyclSplitEvaluator, BasicTest) {
BasicTestSplitEvaluator<float>("( 0, 0)", false);
BasicTestSplitEvaluator<float>("( 1, 0)", true);
BasicTestSplitEvaluator<float>("( 0, 1)", true);
BasicTestSplitEvaluator<float>("(-1, 0)", true);
BasicTestSplitEvaluator<float>("( 0, -1)", true);
BasicTestSplitEvaluator<float>("( 1, 1)", true);
BasicTestSplitEvaluator<float>("(-1, -1)", true);
BasicTestSplitEvaluator<float>("( 1, -1)", true);
BasicTestSplitEvaluator<float>("(-1, 1)", true);
}
TEST(SyclSplitEvaluator, TestMath) {
// Without constraints
TestSplitEvaluator<float>("( 0, 0)");
// With constraints
TestSplitEvaluator<float>("( 1, 0)");
}
} // namespace xgboost::sycl::tree