[Breaking] Rename data to X in predict_proba. (#6555)
New Scikit-Learn version uses keyword argument, and `X` is the predefined keyword. * Use pip to install latest Python graphviz on Windows CI.
This commit is contained in:
parent
cb207a355d
commit
610ee632cc
@ -1321,10 +1321,10 @@ class DaskXGBClassifier(DaskScikitLearnBase, XGBClassifierBase):
|
||||
feature_weights=feature_weights,
|
||||
callbacks=callbacks)
|
||||
|
||||
async def _predict_proba_async(self, data, output_margin=False,
|
||||
async def _predict_proba_async(self, X, output_margin=False,
|
||||
base_margin=None):
|
||||
test_dmatrix = await DaskDMatrix(
|
||||
client=self.client, data=data, base_margin=base_margin,
|
||||
client=self.client, data=X, base_margin=base_margin,
|
||||
missing=self.missing
|
||||
)
|
||||
pred_probs = await predict(client=self.client,
|
||||
@ -1334,11 +1334,11 @@ class DaskXGBClassifier(DaskScikitLearnBase, XGBClassifierBase):
|
||||
return pred_probs
|
||||
|
||||
# pylint: disable=arguments-differ,missing-docstring
|
||||
def predict_proba(self, data, output_margin=False, base_margin=None):
|
||||
def predict_proba(self, X, output_margin=False, base_margin=None):
|
||||
_assert_dask_support()
|
||||
return self.client.sync(
|
||||
self._predict_proba_async,
|
||||
data,
|
||||
X=X,
|
||||
output_margin=output_margin,
|
||||
base_margin=base_margin
|
||||
)
|
||||
|
||||
@ -1000,10 +1000,9 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
return self._le.inverse_transform(column_indexes)
|
||||
return column_indexes
|
||||
|
||||
def predict_proba(self, data, ntree_limit=None, validate_features=False,
|
||||
def predict_proba(self, X, ntree_limit=None, validate_features=False,
|
||||
base_margin=None):
|
||||
"""
|
||||
Predict the probability of each `data` example being of a given class.
|
||||
""" Predict the probability of each `X` example being of a given class.
|
||||
|
||||
.. note:: This function is not thread safe
|
||||
|
||||
@ -1013,21 +1012,22 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
X : array_like
|
||||
Feature matrix.
|
||||
ntree_limit : int
|
||||
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
||||
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
||||
Limit number of trees in the prediction; defaults to best_ntree_limit if
|
||||
defined (i.e. it has been trained with early stopping), otherwise 0 (use all
|
||||
trees).
|
||||
validate_features : bool
|
||||
When this is True, validate that the Booster's and data's feature_names are identical.
|
||||
Otherwise, it is assumed that the feature_names are the same.
|
||||
When this is True, validate that the Booster's and data's feature_names are
|
||||
identical. Otherwise, it is assumed that the feature_names are the same.
|
||||
|
||||
Returns
|
||||
-------
|
||||
prediction : numpy array
|
||||
a numpy array with the probability of each data example being of a given class.
|
||||
"""
|
||||
test_dmatrix = DMatrix(data, base_margin=base_margin,
|
||||
test_dmatrix = DMatrix(X, base_margin=base_margin,
|
||||
missing=self.missing, nthread=self.n_jobs)
|
||||
if ntree_limit is None:
|
||||
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
||||
|
||||
@ -9,7 +9,6 @@ dependencies:
|
||||
- scikit-learn
|
||||
- pandas
|
||||
- pytest
|
||||
- python-graphviz
|
||||
- boto3
|
||||
- hypothesis
|
||||
- jsonschema
|
||||
@ -17,3 +16,4 @@ dependencies:
|
||||
- pip:
|
||||
- cupy-cuda101
|
||||
- modin[all]
|
||||
- graphviz
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user