Support column split in GPU evaluate splits (#9511)

This commit is contained in:
Rong Ou 2023-08-23 01:33:43 -07:00 committed by GitHub
parent 8c10af45a0
commit 6103dca0bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 240 additions and 113 deletions

View File

@ -57,6 +57,20 @@ inline void AllReduce(int device, double *send_receive_buffer, size_t count) {
Communicator::GetDevice(device)->AllReduce(send_receive_buffer, count, DataType::kDouble, op);
}
/**
* @brief Gather values from all all processes.
*
* This assumes all ranks have the same size.
*
* @param send_buffer Buffer storing the data to be sent.
* @param receive_buffer Buffer storing the gathered data.
* @param send_size Size of the sent data in bytes.
*/
inline void AllGather(int device, void const *send_buffer, void *receive_buffer,
std::size_t send_size) {
Communicator::GetDevice(device)->AllGather(send_buffer, receive_buffer, send_size);
}
/**
* @brief Gather variable-length values from all processes.
* @param device ID of the device.

View File

@ -27,6 +27,17 @@ class DeviceCommunicator {
virtual void AllReduce(void *send_receive_buffer, std::size_t count, DataType data_type,
Operation op) = 0;
/**
* @brief Gather values from all all processes.
*
* This assumes all ranks have the same size.
*
* @param send_buffer Buffer storing the data to be sent.
* @param receive_buffer Buffer storing the gathered data.
* @param send_size Size of the sent data in bytes.
*/
virtual void AllGather(void const *send_buffer, void *receive_buffer, std::size_t send_size) = 0;
/**
* @brief Gather variable-length values from all processes.
* @param send_buffer Buffer storing the input data.

View File

@ -28,12 +28,26 @@ class DeviceCommunicatorAdapter : public DeviceCommunicator {
dh::safe_cuda(cudaSetDevice(device_ordinal_));
auto size = count * GetTypeSize(data_type);
host_buffer_.reserve(size);
host_buffer_.resize(size);
dh::safe_cuda(cudaMemcpy(host_buffer_.data(), send_receive_buffer, size, cudaMemcpyDefault));
Allreduce(host_buffer_.data(), count, data_type, op);
dh::safe_cuda(cudaMemcpy(send_receive_buffer, host_buffer_.data(), size, cudaMemcpyDefault));
}
void AllGather(void const *send_buffer, void *receive_buffer, std::size_t send_size) override {
if (world_size_ == 1) {
return;
}
dh::safe_cuda(cudaSetDevice(device_ordinal_));
host_buffer_.resize(send_size * world_size_);
dh::safe_cuda(cudaMemcpy(host_buffer_.data() + rank_ * send_size, send_buffer, send_size,
cudaMemcpyDefault));
Allgather(host_buffer_.data(), host_buffer_.size());
dh::safe_cuda(
cudaMemcpy(receive_buffer, host_buffer_.data(), host_buffer_.size(), cudaMemcpyDefault));
}
void AllGatherV(void const *send_buffer, size_t length_bytes, std::vector<std::size_t> *segments,
dh::caching_device_vector<char> *receive_buffer) override {
if (world_size_ == 1) {
@ -49,7 +63,7 @@ class DeviceCommunicatorAdapter : public DeviceCommunicator {
auto total_bytes = std::accumulate(segments->cbegin(), segments->cend(), 0UL);
receive_buffer->resize(total_bytes);
host_buffer_.reserve(total_bytes);
host_buffer_.resize(total_bytes);
size_t offset = 0;
for (int32_t i = 0; i < world_size_; ++i) {
size_t as_bytes = segments->at(i);

View File

@ -178,6 +178,17 @@ void NcclDeviceCommunicator::AllReduce(void *send_receive_buffer, std::size_t co
allreduce_calls_ += 1;
}
void NcclDeviceCommunicator::AllGather(void const *send_buffer, void *receive_buffer,
std::size_t send_size) {
if (world_size_ == 1) {
return;
}
dh::safe_cuda(cudaSetDevice(device_ordinal_));
dh::safe_nccl(ncclAllGather(send_buffer, receive_buffer, send_size, ncclInt8, nccl_comm_,
dh::DefaultStream()));
}
void NcclDeviceCommunicator::AllGatherV(void const *send_buffer, size_t length_bytes,
std::vector<std::size_t> *segments,
dh::caching_device_vector<char> *receive_buffer) {

View File

@ -29,6 +29,7 @@ class NcclDeviceCommunicator : public DeviceCommunicator {
~NcclDeviceCommunicator() override;
void AllReduce(void *send_receive_buffer, std::size_t count, DataType data_type,
Operation op) override;
void AllGather(void const *send_buffer, void *receive_buffer, std::size_t send_size) override;
void AllGatherV(void const *send_buffer, size_t length_bytes, std::vector<std::size_t> *segments,
dh::caching_device_vector<char> *receive_buffer) override;
void Synchronize() override;

View File

@ -5,8 +5,8 @@
#include <vector>
#include <limits>
#include "../../collective/communicator-inl.cuh"
#include "../../common/categorical.h"
#include "../../common/device_helpers.cuh"
#include "../../data/ellpack_page.cuh"
#include "evaluate_splits.cuh"
#include "expand_entry.cuh"
@ -409,6 +409,23 @@ void GPUHistEvaluator::EvaluateSplits(
this->LaunchEvaluateSplits(max_active_features, d_inputs, shared_inputs,
evaluator, out_splits);
if (is_column_split_) {
// With column-wise data split, we gather the split candidates from all the workers and find the
// global best candidates.
auto const world_size = collective::GetWorldSize();
dh::TemporaryArray<DeviceSplitCandidate> all_candidate_storage(out_splits.size() * world_size);
auto all_candidates = dh::ToSpan(all_candidate_storage);
collective::AllGather(device_, out_splits.data(), all_candidates.data(),
out_splits.size() * sizeof(DeviceSplitCandidate));
// Reduce to get the best candidate from all workers.
dh::LaunchN(out_splits.size(), [world_size, all_candidates, out_splits] __device__(size_t i) {
for (auto rank = 0; rank < world_size; rank++) {
out_splits[i] = out_splits[i] + all_candidates[rank * out_splits.size() + i];
}
});
}
auto d_sorted_idx = this->SortedIdx(d_inputs.size(), shared_inputs.feature_values.size());
auto d_entries = out_entries;
auto device_cats_accessor = this->DeviceCatStorage(nidx);

View File

@ -83,6 +83,9 @@ class GPUHistEvaluator {
// Number of elements of categorical storage type
// needed to hold categoricals for a single mode
std::size_t node_categorical_storage_size_ = 0;
// Is the data split column-wise?
bool is_column_split_ = false;
int32_t device_;
// Copy the categories from device to host asynchronously.
void CopyToHost( const std::vector<bst_node_t>& nidx);
@ -136,7 +139,8 @@ class GPUHistEvaluator {
* \brief Reset the evaluator, should be called before any use.
*/
void Reset(common::HistogramCuts const &cuts, common::Span<FeatureType const> ft,
bst_feature_t n_features, TrainParam const &param, int32_t device);
bst_feature_t n_features, TrainParam const &param, bool is_column_split,
int32_t device);
/**
* \brief Get host category storage for nidx. Different from the internal version, this

View File

@ -14,10 +14,9 @@
namespace xgboost {
namespace tree {
void GPUHistEvaluator::Reset(common::HistogramCuts const &cuts,
common::Span<FeatureType const> ft,
bst_feature_t n_features, TrainParam const &param,
int32_t device) {
void GPUHistEvaluator::Reset(common::HistogramCuts const &cuts, common::Span<FeatureType const> ft,
bst_feature_t n_features, TrainParam const &param,
bool is_column_split, int32_t device) {
param_ = param;
tree_evaluator_ = TreeEvaluator{param, n_features, device};
has_categoricals_ = cuts.HasCategorical();
@ -65,6 +64,8 @@ void GPUHistEvaluator::Reset(common::HistogramCuts const &cuts,
return fidx;
});
}
is_column_split_ = is_column_split;
device_ = device;
}
common::Span<bst_feature_t const> GPUHistEvaluator::SortHistogram(

View File

@ -242,7 +242,8 @@ struct GPUHistMakerDevice {
page = sample.page;
gpair = sample.gpair;
this->evaluator_.Reset(page->Cuts(), feature_types, dmat->Info().num_col_, param, ctx_->gpu_id);
this->evaluator_.Reset(page->Cuts(), feature_types, dmat->Info().num_col_, param,
dmat->Info().IsColumnSplit(), ctx_->gpu_id);
quantiser.reset(new GradientQuantiser(this->gpair));

View File

@ -11,8 +11,8 @@
#include "../../../plugin/federated/federated_communicator.h"
#include "../../../src/collective/communicator-inl.cuh"
#include "../../../src/collective/device_communicator_adapter.cuh"
#include "./helpers.h"
#include "../helpers.h"
#include "./helpers.h"
namespace xgboost::collective {
@ -45,6 +45,28 @@ TEST_F(FederatedAdapterTest, MGPUAllReduceSum) {
RunWithFederatedCommunicator(kWorldSize, server_->Address(), &VerifyAllReduceSum);
}
namespace {
void VerifyAllGather() {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
auto const device = GPUIDX;
common::SetDevice(device);
thrust::device_vector<double> send_buffer(1, rank);
thrust::device_vector<double> receive_buffer(world_size, 0);
collective::AllGather(device, send_buffer.data().get(), receive_buffer.data().get(),
sizeof(double));
thrust::host_vector<double> host_buffer = receive_buffer;
EXPECT_EQ(host_buffer.size(), world_size);
for (auto i = 0; i < world_size; i++) {
EXPECT_EQ(host_buffer[i], i);
}
}
} // anonymous namespace
TEST_F(FederatedAdapterTest, MGPUAllGather) {
RunWithFederatedCommunicator(kWorldSize, server_->Address(), &VerifyAllGather);
}
namespace {
void VerifyAllGatherV() {
auto const world_size = collective::GetWorldSize();

View File

@ -2,24 +2,23 @@
* Copyright 2020-2022 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <thrust/host_vector.h>
#include "../../../../src/tree/gpu_hist/evaluate_splits.cuh"
#include "../../helpers.h"
#include "../../histogram_helpers.h"
#include "../test_evaluate_splits.h" // TestPartitionBasedSplit
#include <thrust/host_vector.h>
namespace xgboost {
namespace tree {
namespace {
auto ZeroParam() {
auto args = Args{{"min_child_weight", "0"},
{"lambda", "0"}};
auto args = Args{{"min_child_weight", "0"}, {"lambda", "0"}};
TrainParam tparam;
tparam.UpdateAllowUnknown(args);
return tparam;
}
} // anonymous namespace
inline GradientQuantiser DummyRoundingFactor() {
@ -37,7 +36,6 @@ thrust::device_vector<GradientPairInt64> ConvertToInteger(std::vector<GradientPa
return y;
}
TEST_F(TestCategoricalSplitWithMissing, GPUHistEvaluator) {
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{0};
GPUTrainingParam param{param_};
@ -61,12 +59,13 @@ TEST_F(TestCategoricalSplitWithMissing, GPUHistEvaluator) {
GPUHistEvaluator evaluator{param_, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts_, dh::ToSpan(feature_types), feature_set.size(), param_, 0);
evaluator.Reset(cuts_, dh::ToSpan(feature_types), feature_set.size(), param_, false, 0);
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
ASSERT_EQ(result.thresh, 1);
this->CheckResult(result.loss_chg, result.findex, result.fvalue, result.is_cat,
result.dir == kLeftDir, quantiser.ToFloatingPoint(result.left_sum), quantiser.ToFloatingPoint(result.right_sum));
result.dir == kLeftDir, quantiser.ToFloatingPoint(result.left_sum),
quantiser.ToFloatingPoint(result.right_sum));
}
TEST(GpuHist, PartitionBasic) {
@ -102,7 +101,7 @@ TEST(GpuHist, PartitionBasic) {
};
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0);
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, false, 0);
{
// -1.0s go right
@ -143,7 +142,8 @@ TEST(GpuHist, PartitionBasic) {
EXPECT_EQ(result.left_sum + result.right_sum, parent_sum);
}
// With 3.0/3.0 missing values
// Forward, first 2 categories are selected, while the last one go to left along with missing value
// Forward, first 2 categories are selected, while the last one go to left along with missing
// value
{
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 6.0});
auto feature_histogram = ConvertToInteger({{-1.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}});
@ -213,11 +213,12 @@ TEST(GpuHist, PartitionTwoFeatures) {
false};
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0);
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, false, 0);
{
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0});
auto feature_histogram = ConvertToInteger({ {-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}});
auto feature_histogram = ConvertToInteger(
{{-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}});
EvaluateSplitInputs input{0, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
@ -229,7 +230,8 @@ TEST(GpuHist, PartitionTwoFeatures) {
{
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0});
auto feature_histogram = ConvertToInteger({ {-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0}});
auto feature_histogram = ConvertToInteger(
{{-2.0, 1.0}, {-2.0, 1.0}, {-2.0, 1.0}, {-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0}});
EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
@ -271,12 +273,12 @@ TEST(GpuHist, PartitionTwoNodes) {
false};
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0);
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, false, 0);
{
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{-6.0, 3.0});
auto feature_histogram_a = ConvertToInteger({{-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0},
{-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}});
auto feature_histogram_a = ConvertToInteger(
{{-1.0, 1.0}, {-2.5, 1.0}, {-2.5, 1.0}, {-1.0, 1.0}, {-1.0, 1.0}, {-4.0, 1.0}});
thrust::device_vector<EvaluateSplitInputs> inputs(2);
inputs[0] = EvaluateSplitInputs{0, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram_a)};
@ -304,8 +306,7 @@ void TestEvaluateSingleSplit(bool is_categorical) {
// Setup gradients so that second feature gets higher gain
auto feature_histogram = ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}});
dh::device_vector<FeatureType> feature_types(feature_set.size(),
FeatureType::kCategorical);
dh::device_vector<FeatureType> feature_types(feature_set.size(), FeatureType::kCategorical);
common::Span<FeatureType> d_feature_types;
if (is_categorical) {
auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(),
@ -324,9 +325,8 @@ void TestEvaluateSingleSplit(bool is_categorical) {
cuts.min_vals_.ConstDeviceSpan(),
false};
GPUHistEvaluator evaluator{
tparam, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, 0);
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_set.size()), 0};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, false, 0);
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
EXPECT_EQ(result.findex, 1);
@ -338,31 +338,23 @@ void TestEvaluateSingleSplit(bool is_categorical) {
EXPECT_EQ(result.left_sum + result.right_sum, parent_sum);
}
TEST(GpuHist, EvaluateSingleSplit) {
TestEvaluateSingleSplit(false);
}
TEST(GpuHist, EvaluateSingleSplit) { TestEvaluateSingleSplit(false); }
TEST(GpuHist, EvaluateSingleCategoricalSplit) {
TestEvaluateSingleSplit(true);
}
TEST(GpuHist, EvaluateSingleCategoricalSplit) { TestEvaluateSingleSplit(true); }
TEST(GpuHist, EvaluateSingleSplitMissing) {
auto quantiser = DummyRoundingFactor();
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{1.0, 1.5});
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{1.0, 1.5});
TrainParam tparam = ZeroParam();
GPUTrainingParam param{tparam};
thrust::device_vector<bst_feature_t> feature_set =
std::vector<bst_feature_t>{0};
thrust::device_vector<uint32_t> feature_segments =
std::vector<bst_row_t>{0, 2};
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{0};
thrust::device_vector<uint32_t> feature_segments = std::vector<bst_row_t>{0, 2};
thrust::device_vector<float> feature_values = std::vector<float>{1.0, 2.0};
thrust::device_vector<float> feature_min_values = std::vector<float>{0.0};
auto feature_histogram = ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input{1,0,
parent_sum,
dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
EvaluateSplitSharedInputs shared_inputs{param,
quantiser,
{},
@ -377,7 +369,7 @@ TEST(GpuHist, EvaluateSingleSplitMissing) {
EXPECT_EQ(result.findex, 0);
EXPECT_EQ(result.fvalue, 1.0);
EXPECT_EQ(result.dir, kRightDir);
EXPECT_EQ(result.left_sum,quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5)));
EXPECT_EQ(result.left_sum, quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5)));
EXPECT_EQ(result.right_sum, quantiser.ToFixedPoint(GradientPairPrecise(1.5, 1.0)));
}
@ -398,24 +390,18 @@ TEST(GpuHist, EvaluateSingleSplitEmpty) {
// Feature 0 has a better split, but the algorithm must select feature 1
TEST(GpuHist, EvaluateSingleSplitFeatureSampling) {
auto quantiser = DummyRoundingFactor();
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0});
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0});
TrainParam tparam = ZeroParam();
tparam.UpdateAllowUnknown(Args{});
GPUTrainingParam param{tparam};
thrust::device_vector<bst_feature_t> feature_set =
std::vector<bst_feature_t>{1};
thrust::device_vector<uint32_t> feature_segments =
std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values =
std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values =
std::vector<float>{0.0, 10.0};
auto feature_histogram = ConvertToInteger({ {-10.0, 0.5}, {10.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input{1,0,
parent_sum,
dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{1};
thrust::device_vector<uint32_t> feature_segments = std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values = std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values = std::vector<float>{0.0, 10.0};
auto feature_histogram = ConvertToInteger({{-10.0, 0.5}, {10.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
EvaluateSplitSharedInputs shared_inputs{param,
quantiser,
{},
@ -429,31 +415,25 @@ TEST(GpuHist, EvaluateSingleSplitFeatureSampling) {
EXPECT_EQ(result.findex, 1);
EXPECT_EQ(result.fvalue, 11.0);
EXPECT_EQ(result.left_sum,quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5)));
EXPECT_EQ(result.left_sum, quantiser.ToFixedPoint(GradientPairPrecise(-0.5, 0.5)));
EXPECT_EQ(result.right_sum, quantiser.ToFixedPoint(GradientPairPrecise(0.5, 0.5)));
}
// Features 0 and 1 have identical gain, the algorithm must select 0
TEST(GpuHist, EvaluateSingleSplitBreakTies) {
auto quantiser = DummyRoundingFactor();
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0});
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0});
TrainParam tparam = ZeroParam();
tparam.UpdateAllowUnknown(Args{});
GPUTrainingParam param{tparam};
thrust::device_vector<bst_feature_t> feature_set =
std::vector<bst_feature_t>{0, 1};
thrust::device_vector<uint32_t> feature_segments =
std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values =
std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values =
std::vector<float>{0.0, 10.0};
auto feature_histogram = ConvertToInteger({ {-0.5, 0.5}, {0.5, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input{1,0,
parent_sum,
dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{0, 1};
thrust::device_vector<uint32_t> feature_segments = std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values = std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values = std::vector<float>{0.0, 10.0};
auto feature_histogram = ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
EvaluateSplitSharedInputs shared_inputs{param,
quantiser,
{},
@ -463,7 +443,7 @@ TEST(GpuHist, EvaluateSingleSplitBreakTies) {
false};
GPUHistEvaluator evaluator(tparam, feature_min_values.size(), 0);
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input,shared_inputs).split;
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
EXPECT_EQ(result.findex, 0);
EXPECT_EQ(result.fvalue, 1.0);
@ -477,41 +457,31 @@ TEST(GpuHist, EvaluateSplits) {
tparam.UpdateAllowUnknown(Args{});
GPUTrainingParam param{tparam};
thrust::device_vector<bst_feature_t> feature_set =
std::vector<bst_feature_t>{0, 1};
thrust::device_vector<uint32_t> feature_segments =
std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values =
std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values =
std::vector<float>{0.0, 0.0};
auto feature_histogram_left = ConvertToInteger({ {-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}});
auto feature_histogram_right = ConvertToInteger({ {-1.0, 0.5}, {1.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input_left{
1,0,
parent_sum,
dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram_left)};
EvaluateSplitInputs input_right{
2,0,
parent_sum,
dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram_right)};
EvaluateSplitSharedInputs shared_inputs{
param,
quantiser,
{},
dh::ToSpan(feature_segments),
dh::ToSpan(feature_values),
dh::ToSpan(feature_min_values),
false
};
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{0, 1};
thrust::device_vector<uint32_t> feature_segments = std::vector<bst_row_t>{0, 2, 4};
thrust::device_vector<float> feature_values = std::vector<float>{1.0, 2.0, 11.0, 12.0};
thrust::device_vector<float> feature_min_values = std::vector<float>{0.0, 0.0};
auto feature_histogram_left =
ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}, {-1.0, 0.5}, {1.0, 0.5}});
auto feature_histogram_right =
ConvertToInteger({{-1.0, 0.5}, {1.0, 0.5}, {-0.5, 0.5}, {0.5, 0.5}});
EvaluateSplitInputs input_left{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram_left)};
EvaluateSplitInputs input_right{2, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram_right)};
EvaluateSplitSharedInputs shared_inputs{param,
quantiser,
{},
dh::ToSpan(feature_segments),
dh::ToSpan(feature_values),
dh::ToSpan(feature_min_values),
false};
GPUHistEvaluator evaluator{
tparam, static_cast<bst_feature_t>(feature_min_values.size()), 0};
dh::device_vector<EvaluateSplitInputs> inputs = std::vector<EvaluateSplitInputs>{input_left,input_right};
evaluator.LaunchEvaluateSplits(input_left.feature_set.size(),dh::ToSpan(inputs),shared_inputs, evaluator.GetEvaluator(),
dh::ToSpan(out_splits));
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_min_values.size()), 0};
dh::device_vector<EvaluateSplitInputs> inputs =
std::vector<EvaluateSplitInputs>{input_left, input_right};
evaluator.LaunchEvaluateSplits(input_left.feature_set.size(), dh::ToSpan(inputs), shared_inputs,
evaluator.GetEvaluator(), dh::ToSpan(out_splits));
DeviceSplitCandidate result_left = out_splits[0];
EXPECT_EQ(result_left.findex, 1);
@ -530,18 +500,19 @@ TEST_F(TestPartitionBasedSplit, GpuHist) {
cuts_.cut_values_.SetDevice(0);
cuts_.min_vals_.SetDevice(0);
evaluator.Reset(cuts_, dh::ToSpan(ft), info_.num_col_, param_, 0);
evaluator.Reset(cuts_, dh::ToSpan(ft), info_.num_col_, param_, false, 0);
// Convert the sample histogram to fixed point
auto quantiser = DummyRoundingFactor();
thrust::host_vector<GradientPairInt64> h_hist;
for(auto e: hist_[0]){
for (auto e : hist_[0]) {
h_hist.push_back(quantiser.ToFixedPoint(e));
}
dh::device_vector<GradientPairInt64> d_hist = h_hist;
dh::device_vector<bst_feature_t> feature_set{std::vector<bst_feature_t>{0}};
EvaluateSplitInputs input{0, 0, quantiser.ToFixedPoint(total_gpair_), dh::ToSpan(feature_set), dh::ToSpan(d_hist)};
EvaluateSplitInputs input{0, 0, quantiser.ToFixedPoint(total_gpair_), dh::ToSpan(feature_set),
dh::ToSpan(d_hist)};
EvaluateSplitSharedInputs shared_inputs{GPUTrainingParam{param_},
quantiser,
dh::ToSpan(ft),
@ -552,5 +523,65 @@ TEST_F(TestPartitionBasedSplit, GpuHist) {
auto split = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
ASSERT_NEAR(split.loss_chg, best_score_, 1e-2);
}
class MGPUHistTest : public BaseMGPUTest {};
namespace {
void VerifyColumnSplitEvaluateSingleSplit(bool is_categorical) {
auto rank = collective::GetRank();
auto quantiser = DummyRoundingFactor();
auto parent_sum = quantiser.ToFixedPoint(GradientPairPrecise{0.0, 1.0});
TrainParam tparam = ZeroParam();
GPUTrainingParam param{tparam};
common::HistogramCuts cuts{rank == 0
? MakeCutsForTest({1.0, 2.0}, {0, 2, 2}, {0.0, 0.0}, GPUIDX)
: MakeCutsForTest({11.0, 12.0}, {0, 0, 2}, {0.0, 0.0}, GPUIDX)};
thrust::device_vector<bst_feature_t> feature_set = std::vector<bst_feature_t>{0, 1};
// Setup gradients so that second feature gets higher gain
auto feature_histogram = rank == 0 ? ConvertToInteger({{-0.5, 0.5}, {0.5, 0.5}})
: ConvertToInteger({{-1.0, 0.5}, {1.0, 0.5}});
dh::device_vector<FeatureType> feature_types(feature_set.size(), FeatureType::kCategorical);
common::Span<FeatureType> d_feature_types;
if (is_categorical) {
auto max_cat = *std::max_element(cuts.cut_values_.HostVector().begin(),
cuts.cut_values_.HostVector().end());
cuts.SetCategorical(true, max_cat);
d_feature_types = dh::ToSpan(feature_types);
}
EvaluateSplitInputs input{1, 0, parent_sum, dh::ToSpan(feature_set),
dh::ToSpan(feature_histogram)};
EvaluateSplitSharedInputs shared_inputs{param,
quantiser,
d_feature_types,
cuts.cut_ptrs_.ConstDeviceSpan(),
cuts.cut_values_.ConstDeviceSpan(),
cuts.min_vals_.ConstDeviceSpan(),
false};
GPUHistEvaluator evaluator{tparam, static_cast<bst_feature_t>(feature_set.size()), GPUIDX};
evaluator.Reset(cuts, dh::ToSpan(feature_types), feature_set.size(), tparam, true, GPUIDX);
DeviceSplitCandidate result = evaluator.EvaluateSingleSplit(input, shared_inputs).split;
EXPECT_EQ(result.findex, 1) << "rank: " << rank;
if (is_categorical) {
ASSERT_TRUE(std::isnan(result.fvalue));
} else {
EXPECT_EQ(result.fvalue, 11.0) << "rank: " << rank;
}
EXPECT_EQ(result.left_sum + result.right_sum, parent_sum) << "rank: " << rank;
}
} // anonymous namespace
TEST_F(MGPUHistTest, ColumnSplitEvaluateSingleSplit) {
DoTest(VerifyColumnSplitEvaluateSingleSplit, false);
}
TEST_F(MGPUHistTest, ColumnSplitEvaluateSingleCategoricalSplit) {
DoTest(VerifyColumnSplitEvaluateSingleSplit, true);
}
} // namespace tree
} // namespace xgboost