Merge pull request #1037 from CodingCat/allow_empty_partitions

[jvm-packages] allow empty partitions
This commit is contained in:
Nan Zhu 2016-03-23 15:04:51 -04:00
commit 605c23e0dc
2 changed files with 27 additions and 3 deletions

View File

@ -32,8 +32,12 @@ class XGBoostModel(_booster: Booster)(implicit val sc: SparkContext) extends Ser
import DataUtils._
val broadcastBooster = testSet.sparkContext.broadcast(_booster)
testSet.mapPartitions { testSamples =>
if (testSamples.hasNext) {
val dMatrix = new DMatrix(new JDMatrix(testSamples, null))
Iterator(broadcastBooster.value.predict(dMatrix))
} else {
Iterator()
}
}
}

View File

@ -23,7 +23,7 @@ import scala.collection.mutable.ListBuffer
import scala.io.Source
import org.apache.commons.logging.LogFactory
import org.apache.spark.mllib.linalg.DenseVector
import org.apache.spark.mllib.linalg.{Vector => SparkVector, Vectors, DenseVector}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
@ -190,4 +190,24 @@ class XGBoostSuite extends FunSuite with BeforeAndAfter {
assert(eval.eval(xgBoostModel.predict(testSetDMatrix), testSetDMatrix) < 0.1)
customSparkContext.stop()
}
test("test with empty partition") {
def buildEmptyRDD(sparkContext: Option[SparkContext] = None): RDD[SparkVector] = {
val sampleList = new ListBuffer[SparkVector]
sparkContext.getOrElse(sc).parallelize(sampleList, numWorkers)
}
val eval = new EvalError()
val trainingRDD = buildTrainingRDD()
val testRDD = buildEmptyRDD()
import DataUtils._
val tempDir = Files.createTempDirectory("xgboosttest-")
val tempFile = Files.createTempFile(tempDir, "", "")
val paramMap = List("eta" -> "1", "max_depth" -> "2", "silent" -> "0",
"objective" -> "binary:logistic").toMap
val xgBoostModel = XGBoost.train(trainingRDD, paramMap, 5, numWorkers)
println(xgBoostModel.predict(testRDD))
}
}