[EM] Handle base idx in GPU histogram. (#10549)

This commit is contained in:
Jiaming Yuan 2024-07-11 03:26:30 +08:00 committed by GitHub
parent 34b154c284
commit 5f910cd4ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 167 additions and 71 deletions

View File

@ -1,8 +1,7 @@
/**
* Copyright 2020-2024, XGBoost Contributors
*/
#include <thrust/iterator/transform_iterator.h>
#include <thrust/reduce.h>
#include <thrust/iterator/transform_iterator.h> // for make_transform_iterator
#include <algorithm>
#include <cstdint> // uint32_t, int32_t
@ -101,8 +100,7 @@ GradientQuantiser::GradientQuantiser(Context const* ctx, common::Span<GradientPa
static_cast<T>(1) / to_floating_point_.GetHess());
}
XGBOOST_DEV_INLINE void
AtomicAddGpairShared(xgboost::GradientPairInt64 *dest,
XGBOOST_DEV_INLINE void AtomicAddGpairShared(xgboost::GradientPairInt64* dest,
xgboost::GradientPairInt64 const& gpair) {
auto dst_ptr = reinterpret_cast<int64_t *>(dest);
auto g = gpair.GetQuantisedGrad();
@ -131,7 +129,9 @@ template <int kBlockThreads, int kItemsPerThread,
class HistogramAgent {
GradientPairInt64* smem_arr_;
GradientPairInt64* d_node_hist_;
dh::LDGIterator<const RowPartitioner::RowIndexT> d_ridx_;
using Idx = RowPartitioner::RowIndexT;
dh::LDGIterator<const Idx> d_ridx_;
const GradientPair* d_gpair_;
const FeatureGroup group_;
const EllpackDeviceAccessor& matrix_;
@ -142,8 +142,7 @@ class HistogramAgent {
public:
__device__ HistogramAgent(GradientPairInt64* smem_arr,
GradientPairInt64* __restrict__ d_node_hist, const FeatureGroup& group,
const EllpackDeviceAccessor& matrix,
common::Span<const RowPartitioner::RowIndexT> d_ridx,
const EllpackDeviceAccessor& matrix, common::Span<const Idx> d_ridx,
const GradientQuantiser& rounding, const GradientPair* d_gpair)
: smem_arr_(smem_arr),
d_node_hist_(d_node_hist),
@ -154,15 +153,15 @@ class HistogramAgent {
n_elements_(feature_stride_ * d_ridx.size()),
rounding_(rounding),
d_gpair_(d_gpair) {}
__device__ void ProcessPartialTileShared(std::size_t offset) {
for (std::size_t idx = offset + threadIdx.x;
idx < std::min(offset + kBlockThreads * kItemsPerTile, n_elements_);
idx += kBlockThreads) {
int ridx = d_ridx_[idx / feature_stride_];
int gidx =
matrix_
.gidx_iter[ridx * matrix_.row_stride + group_.start_feature + idx % feature_stride_] -
group_.start_bin;
Idx ridx = d_ridx_[idx / feature_stride_];
Idx midx = (ridx - matrix_.base_rowid) * matrix_.row_stride + group_.start_feature +
idx % feature_stride_;
bst_bin_t gidx = matrix_.gidx_iter[midx] - group_.start_bin;
if (matrix_.is_dense || gidx != matrix_.NumBins()) {
auto adjusted = rounding_.ToFixedPoint(d_gpair_[ridx]);
AtomicAddGpairShared(smem_arr_ + gidx, adjusted);
@ -188,8 +187,8 @@ class HistogramAgent {
#pragma unroll
for (int i = 0; i < kItemsPerThread; i++) {
gpair[i] = d_gpair_[ridx[i]];
gidx[i] = matrix_.gidx_iter[ridx[i] * matrix_.row_stride + group_.start_feature +
idx[i] % feature_stride_];
gidx[i] = matrix_.gidx_iter[(ridx[i] - matrix_.base_rowid) * matrix_.row_stride +
group_.start_feature + idx[i] % feature_stride_];
}
#pragma unroll
for (int i = 0; i < kItemsPerThread; i++) {
@ -200,7 +199,7 @@ class HistogramAgent {
}
}
__device__ void BuildHistogramWithShared() {
dh::BlockFill(smem_arr_, group_.num_bins, GradientPairInt64());
dh::BlockFill(smem_arr_, group_.num_bins, GradientPairInt64{});
__syncthreads();
std::size_t offset = blockIdx.x * kItemsPerTile;
@ -219,10 +218,9 @@ class HistogramAgent {
__device__ void BuildHistogramWithGlobal() {
for (auto idx : dh::GridStrideRange(static_cast<std::size_t>(0), n_elements_)) {
int ridx = d_ridx_[idx / feature_stride_];
int gidx =
matrix_
.gidx_iter[ridx * matrix_.row_stride + group_.start_feature + idx % feature_stride_];
Idx ridx = d_ridx_[idx / feature_stride_];
bst_bin_t gidx = matrix_.gidx_iter[(ridx - matrix_.base_rowid) * matrix_.row_stride +
group_.start_feature + idx % feature_stride_];
if (matrix_.is_dense || gidx != matrix_.NumBins()) {
auto adjusted = rounding_.ToFixedPoint(d_gpair_[ridx]);
AtomicAddGpairGlobal(d_node_hist_ + gidx, adjusted);
@ -231,8 +229,7 @@ class HistogramAgent {
}
};
template <bool use_shared_memory_histograms, int kBlockThreads,
int kItemsPerThread>
template <bool use_shared_memory_histograms, int kBlockThreads, int kItemsPerThread>
__global__ void __launch_bounds__(kBlockThreads)
SharedMemHistKernel(const EllpackDeviceAccessor matrix,
const FeatureGroupsAccessor feature_groups,
@ -251,6 +248,7 @@ __global__ void __launch_bounds__(kBlockThreads)
agent.BuildHistogramWithGlobal();
}
}
namespace {
constexpr std::int32_t kBlockThreads = 1024;
constexpr std::int32_t kItemsPerThread = 8;

View File

@ -78,5 +78,4 @@ class DeviceHistogramBuilder {
common::Span<GradientPairInt64> histogram, GradientQuantiser rounding);
};
} // namespace xgboost::tree
#endif // HISTOGRAM_CUH_

View File

@ -1,28 +1,23 @@
/*!
* Copyright 2017-2022 XGBoost contributors
/**
* Copyright 2017-2024, XGBoost contributors
*/
#include <thrust/iterator/discard_iterator.h>
#include <thrust/iterator/transform_output_iterator.h>
#include <thrust/sequence.h>
#include <thrust/sequence.h> // for sequence
#include <vector>
#include <vector> // for vector
#include "../../common/device_helpers.cuh"
#include "../../common/cuda_context.cuh" // for CUDAContext
#include "../../common/device_helpers.cuh" // for CopyDeviceSpanToVector, ToSpan
#include "row_partitioner.cuh"
namespace xgboost {
namespace tree {
RowPartitioner::RowPartitioner(DeviceOrd device_idx, size_t num_rows)
: device_idx_(device_idx), ridx_(num_rows), ridx_tmp_(num_rows) {
namespace xgboost::tree {
RowPartitioner::RowPartitioner(Context const* ctx, bst_idx_t n_samples, bst_idx_t base_rowid)
: device_idx_(ctx->Device()), ridx_(n_samples), ridx_tmp_(n_samples) {
dh::safe_cuda(cudaSetDevice(device_idx_.ordinal));
ridx_segments_.emplace_back(NodePositionInfo{Segment(0, num_rows)});
thrust::sequence(thrust::device, ridx_.data(), ridx_.data() + ridx_.size());
ridx_segments_.emplace_back(NodePositionInfo{Segment(0, n_samples)});
thrust::sequence(ctx->CUDACtx()->CTP(), ridx_.data(), ridx_.data() + ridx_.size(), base_rowid);
}
RowPartitioner::~RowPartitioner() {
dh::safe_cuda(cudaSetDevice(device_idx_.ordinal));
}
RowPartitioner::~RowPartitioner() { dh::safe_cuda(cudaSetDevice(device_idx_.ordinal)); }
common::Span<const RowPartitioner::RowIndexT> RowPartitioner::GetRows(bst_node_t nidx) {
auto segment = ridx_segments_.at(nidx).segment;
@ -39,6 +34,4 @@ std::vector<RowPartitioner::RowIndexT> RowPartitioner::GetRowsHost(bst_node_t ni
dh::CopyDeviceSpanToVector(&rows, span);
return rows;
}
}; // namespace tree
}; // namespace xgboost
}; // namespace xgboost::tree

View File

@ -1,17 +1,17 @@
/*!
* Copyright 2017-2022 XGBoost contributors
/**
* Copyright 2017-2024, XGBoost contributors
*/
#pragma once
#include <thrust/execution_policy.h>
#include <thrust/iterator/counting_iterator.h> // for make_counting_iterator
#include <thrust/iterator/transform_output_iterator.h> // for make_transform_output_iterator
#include <limits>
#include <vector>
#include <algorithm> // for max
#include <vector> // for vector
#include "../../common/device_helpers.cuh"
#include "xgboost/base.h"
#include "xgboost/context.h"
#include "xgboost/task.h"
#include "xgboost/tree_model.h"
#include "../../common/device_helpers.cuh" // for MakeTransformIterator
#include "xgboost/base.h" // for bst_idx_t
#include "xgboost/context.h" // for Context
namespace xgboost {
namespace tree {
@ -223,7 +223,12 @@ class RowPartitioner {
dh::PinnedMemory pinned2_;
public:
RowPartitioner(DeviceOrd device_idx, size_t num_rows);
/**
* @param ctx Context for device ordinal and stream.
* @param n_samples The number of samples in each batch.
* @param base_rowid The base row index for the current batch.
*/
RowPartitioner(Context const* ctx, bst_idx_t n_samples, bst_idx_t base_rowid);
~RowPartitioner();
RowPartitioner(const RowPartitioner&) = delete;
RowPartitioner& operator=(const RowPartitioner&) = delete;

View File

@ -251,7 +251,8 @@ struct GPUHistMakerDevice {
quantiser = std::make_unique<GradientQuantiser>(ctx_, this->gpair, dmat->Info());
row_partitioner.reset(); // Release the device memory first before reallocating
row_partitioner = std::make_unique<RowPartitioner>(ctx_->Device(), sample.sample_rows);
CHECK_EQ(page->base_rowid, 0);
row_partitioner = std::make_unique<RowPartitioner>(ctx_, sample.sample_rows, page->base_rowid);
// Init histogram
hist.Init(ctx_->Device(), page->Cuts().TotalBins());

View File

@ -2,13 +2,15 @@
* Copyright 2020-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h> // for Context
#include <vector>
#include <memory> // for unique_ptr
#include <vector> // for vector
#include "../../../../src/tree/gpu_hist/histogram.cuh"
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../../../src/tree/param.h" // TrainParam
#include "../../categorical_helpers.h"
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh" // for RowPartitioner
#include "../../../../src/tree/param.h" // for TrainParam
#include "../../categorical_helpers.h" // for OneHotEncodeFeature
#include "../../helpers.h"
namespace xgboost::tree {
@ -24,7 +26,7 @@ void TestDeterministicHistogram(bool is_dense, int shm_size, bool force_global)
for (auto const& batch : matrix->GetBatches<EllpackPage>(&ctx, batch_param)) {
auto* page = batch.Impl();
tree::RowPartitioner row_partitioner(ctx.Device(), kRows);
tree::RowPartitioner row_partitioner{&ctx, kRows, page->base_rowid};
auto ridx = row_partitioner.GetRows(0);
bst_bin_t num_bins = kBins * kCols;
@ -129,7 +131,7 @@ void TestGPUHistogramCategorical(size_t num_categories) {
auto cat_m = GetDMatrixFromData(x, kRows, 1);
cat_m->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
auto batch_param = BatchParam{kBins, tree::TrainParam::DftSparseThreshold()};
tree::RowPartitioner row_partitioner(ctx.Device(), kRows);
tree::RowPartitioner row_partitioner{&ctx, kRows, 0};
auto ridx = row_partitioner.GetRows(0);
dh::device_vector<GradientPairInt64> cat_hist(num_categories);
auto gpair = GenerateRandomGradients(kRows, 0, 2);
@ -262,4 +264,105 @@ TEST(Histogram, Quantiser) {
ASSERT_EQ(gh.GetHess(), 1.0);
}
}
namespace {
class HistogramExternalMemoryTest : public ::testing::TestWithParam<std::tuple<float, bool>> {
public:
void Run(float sparsity, bool force_global) {
bst_idx_t n_samples{512}, n_features{12}, n_batches{3};
std::vector<std::unique_ptr<RowPartitioner>> partitioners;
auto p_fmat = RandomDataGenerator{n_samples, n_features, sparsity}
.Batches(n_batches)
.GenerateSparsePageDMatrix("cache", true);
bst_bin_t n_bins = 16;
BatchParam p{n_bins, TrainParam::DftSparseThreshold()};
auto ctx = MakeCUDACtx(0);
std::unique_ptr<FeatureGroups> fg;
dh::device_vector<GradientPairInt64> single_hist;
dh::device_vector<GradientPairInt64> multi_hist;
auto gpair = GenerateRandomGradients(n_samples);
gpair.SetDevice(ctx.Device());
auto quantiser = GradientQuantiser{&ctx, gpair.ConstDeviceSpan(), p_fmat->Info()};
std::shared_ptr<common::HistogramCuts> cuts;
{
/**
* Multi page.
*/
std::int32_t k{0};
for (auto const& page : p_fmat->GetBatches<EllpackPage>(&ctx, p)) {
auto impl = page.Impl();
if (k == 0) {
// Initialization
auto d_matrix = impl->GetDeviceAccessor(ctx.Device());
fg = std::make_unique<FeatureGroups>(impl->Cuts());
auto init = GradientPairInt64{0, 0};
multi_hist = decltype(multi_hist)(impl->Cuts().TotalBins(), init);
single_hist = decltype(single_hist)(impl->Cuts().TotalBins(), init);
cuts = std::make_shared<common::HistogramCuts>(impl->Cuts());
}
partitioners.emplace_back(
std::make_unique<RowPartitioner>(&ctx, impl->Size(), impl->base_rowid));
auto ridx = partitioners.at(k)->GetRows(0);
auto d_histogram = dh::ToSpan(multi_hist);
DeviceHistogramBuilder builder;
builder.Reset(&ctx, fg->DeviceAccessor(ctx.Device()), force_global);
builder.BuildHistogram(ctx.CUDACtx(), impl->GetDeviceAccessor(ctx.Device()),
fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
d_histogram, quantiser);
++k;
}
ASSERT_EQ(k, n_batches);
}
{
/**
* Single page.
*/
RowPartitioner partitioner{&ctx, p_fmat->Info().num_row_, 0};
SparsePage concat;
std::vector<float> hess(p_fmat->Info().num_row_, 1.0f);
for (auto const& page : p_fmat->GetBatches<SparsePage>()) {
concat.Push(page);
}
EllpackPageImpl page{
ctx.Device(), cuts, concat, p_fmat->IsDense(), p_fmat->Info().num_col_, {}};
auto ridx = partitioner.GetRows(0);
auto d_histogram = dh::ToSpan(single_hist);
DeviceHistogramBuilder builder;
builder.Reset(&ctx, fg->DeviceAccessor(ctx.Device()), force_global);
builder.BuildHistogram(ctx.CUDACtx(), page.GetDeviceAccessor(ctx.Device()),
fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
d_histogram, quantiser);
}
std::vector<GradientPairInt64> h_single(single_hist.size());
thrust::copy(single_hist.begin(), single_hist.end(), h_single.begin());
std::vector<GradientPairInt64> h_multi(multi_hist.size());
thrust::copy(multi_hist.begin(), multi_hist.end(), h_multi.begin());
for (std::size_t i = 0; i < single_hist.size(); ++i) {
ASSERT_EQ(h_single[i].GetQuantisedGrad(), h_multi[i].GetQuantisedGrad());
ASSERT_EQ(h_single[i].GetQuantisedHess(), h_multi[i].GetQuantisedHess());
}
}
};
} // namespace
TEST_P(HistogramExternalMemoryTest, ExternalMemory) {
std::apply(&HistogramExternalMemoryTest::Run, std::tuple_cat(std::make_tuple(this), GetParam()));
}
INSTANTIATE_TEST_SUITE_P(Histogram, HistogramExternalMemoryTest, ::testing::ValuesIn([]() {
std::vector<std::tuple<float, bool>> params;
for (auto global : {true, false}) {
for (auto sparsity : {0.0f, 0.2f, 0.8f}) {
params.emplace_back(sparsity, global);
}
}
return params;
}()));
} // namespace xgboost::tree

View File

@ -1,25 +1,22 @@
/*!
* Copyright 2019-2022 by XGBoost Contributors
/**
* Copyright 2019-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sequence.h>
#include <algorithm>
#include <vector>
#include <cstddef> // for size_t
#include <cstdint> // for uint32_t
#include <vector> // for vector
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../helpers.h"
#include "xgboost/base.h"
#include "xgboost/context.h"
#include "xgboost/task.h"
#include "xgboost/tree_model.h"
namespace xgboost::tree {
void TestUpdatePositionBatch() {
const int kNumRows = 10;
RowPartitioner rp(FstCU(), kNumRows);
auto ctx = MakeCUDACtx(0);
RowPartitioner rp{&ctx, kNumRows, 0};
auto rows = rp.GetRowsHost(0);
EXPECT_EQ(rows.size(), kNumRows);
for (auto i = 0ull; i < kNumRows; i++) {

View File

@ -106,7 +106,7 @@ void TestBuildHist(bool use_shared_memory_histograms) {
gpair.SetDevice(ctx.Device());
thrust::host_vector<common::CompressedByteT> h_gidx_buffer(page->gidx_buffer.HostVector());
maker.row_partitioner = std::make_unique<RowPartitioner>(ctx.Device(), kNRows);
maker.row_partitioner = std::make_unique<RowPartitioner>(&ctx, kNRows, 0);
maker.hist.Init(ctx.Device(), page->Cuts().TotalBins());
maker.hist.AllocateHistograms({0});