Add tests for pickling with custom obj and metric. (#9943)
This commit is contained in:
parent
26a5436a65
commit
5f7b5a6921
@ -279,7 +279,6 @@ available at :ref:`sphx_glr_python_examples_custom_softmax.py`. Also, see
|
||||
Scikit-Learn Interface
|
||||
**********************
|
||||
|
||||
|
||||
The scikit-learn interface of XGBoost has some utilities to improve the integration with
|
||||
standard scikit-learn functions. For instance, after XGBoost 1.6.0 users can use the cost
|
||||
function (not scoring functions) from scikit-learn out of the box:
|
||||
|
||||
@ -101,6 +101,8 @@ snapshot generated by an earlier version of XGBoost may result in errors or unde
|
||||
**If a model is persisted with** ``pickle.dump`` (Python) or ``saveRDS`` (R), **then the model may
|
||||
not be accessible in later versions of XGBoost.**
|
||||
|
||||
.. _custom-obj-metric:
|
||||
|
||||
***************************
|
||||
Custom objective and metric
|
||||
***************************
|
||||
|
||||
@ -192,11 +192,16 @@ __model_doc = f"""
|
||||
Boosting learning rate (xgb's "eta")
|
||||
verbosity : Optional[int]
|
||||
The degree of verbosity. Valid values are 0 (silent) - 3 (debug).
|
||||
|
||||
objective : {SklObjective}
|
||||
Specify the learning task and the corresponding learning objective or
|
||||
a custom objective function to be used (see note below).
|
||||
|
||||
Specify the learning task and the corresponding learning objective or a custom
|
||||
objective function to be used. For custom objective, see
|
||||
:doc:`/tutorials/custom_metric_obj` and :ref:`custom-obj-metric` for more
|
||||
information.
|
||||
|
||||
booster: Optional[str]
|
||||
Specify which booster to use: gbtree, gblinear or dart.
|
||||
Specify which booster to use: `gbtree`, `gblinear` or `dart`.
|
||||
tree_method: Optional[str]
|
||||
Specify which tree method to use. Default to auto. If this parameter is set to
|
||||
default, XGBoost will choose the most conservative option available. It's
|
||||
@ -328,21 +333,21 @@ __model_doc = f"""
|
||||
|
||||
Metric used for monitoring the training result and early stopping. It can be a
|
||||
string or list of strings as names of predefined metric in XGBoost (See
|
||||
doc/parameter.rst), one of the metrics in :py:mod:`sklearn.metrics`, or any other
|
||||
user defined metric that looks like `sklearn.metrics`.
|
||||
doc/parameter.rst), one of the metrics in :py:mod:`sklearn.metrics`, or any
|
||||
other user defined metric that looks like `sklearn.metrics`.
|
||||
|
||||
If custom objective is also provided, then custom metric should implement the
|
||||
corresponding reverse link function.
|
||||
|
||||
Unlike the `scoring` parameter commonly used in scikit-learn, when a callable
|
||||
object is provided, it's assumed to be a cost function and by default XGBoost will
|
||||
minimize the result during early stopping.
|
||||
object is provided, it's assumed to be a cost function and by default XGBoost
|
||||
will minimize the result during early stopping.
|
||||
|
||||
For advanced usage on Early stopping like directly choosing to maximize instead of
|
||||
minimize, see :py:obj:`xgboost.callback.EarlyStopping`.
|
||||
For advanced usage on Early stopping like directly choosing to maximize instead
|
||||
of minimize, see :py:obj:`xgboost.callback.EarlyStopping`.
|
||||
|
||||
See :doc:`Custom Objective and Evaluation Metric </tutorials/custom_metric_obj>`
|
||||
for more.
|
||||
See :doc:`/tutorials/custom_metric_obj` and :ref:`custom-obj-metric` for more
|
||||
information.
|
||||
|
||||
.. note::
|
||||
|
||||
|
||||
@ -815,6 +815,13 @@ def softprob_obj(
|
||||
return objective
|
||||
|
||||
|
||||
def ls_obj(y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Least squared error."""
|
||||
grad = y_pred - y_true
|
||||
hess = np.ones(len(y_true))
|
||||
return grad, hess
|
||||
|
||||
|
||||
class DirectoryExcursion:
|
||||
"""Change directory. Change back and optionally cleaning up the directory when
|
||||
exit.
|
||||
|
||||
@ -1,10 +1,13 @@
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
|
||||
kRows = 100
|
||||
kCols = 10
|
||||
@ -61,3 +64,27 @@ class TestPickling:
|
||||
params = {"nthread": 8, "tree_method": "exact", "subsample": 0.5}
|
||||
config = self.run_model_pickling(params)
|
||||
check(config)
|
||||
|
||||
@pytest.mark.skipif(**tm.no_sklearn())
|
||||
def test_with_sklearn_obj_metric(self) -> None:
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
X, y = tm.datasets.make_regression()
|
||||
reg = xgb.XGBRegressor(objective=tm.ls_obj, eval_metric=mean_squared_error)
|
||||
reg.fit(X, y)
|
||||
|
||||
pkl = pickle.dumps(reg)
|
||||
reg_1 = pickle.loads(pkl)
|
||||
assert callable(reg_1.objective)
|
||||
assert callable(reg_1.eval_metric)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = os.path.join(tmpdir, "model.json")
|
||||
reg.save_model(path)
|
||||
|
||||
reg_2 = xgb.XGBRegressor()
|
||||
reg_2.load_model(path)
|
||||
|
||||
assert not callable(reg_2.objective)
|
||||
assert not callable(reg_2.eval_metric)
|
||||
assert reg_2.eval_metric is None
|
||||
|
||||
@ -504,15 +504,10 @@ def test_regression_with_custom_objective():
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.model_selection import KFold
|
||||
|
||||
def objective_ls(y_true, y_pred):
|
||||
grad = (y_pred - y_true)
|
||||
hess = np.ones(len(y_true))
|
||||
return grad, hess
|
||||
|
||||
X, y = fetch_california_housing(return_X_y=True)
|
||||
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf.split(X, y):
|
||||
xgb_model = xgb.XGBRegressor(objective=objective_ls).fit(
|
||||
xgb_model = xgb.XGBRegressor(objective=tm.ls_obj).fit(
|
||||
X[train_index], y[train_index]
|
||||
)
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
@ -530,27 +525,29 @@ def test_regression_with_custom_objective():
|
||||
np.testing.assert_raises(XGBCustomObjectiveException, xgb_model.fit, X, y)
|
||||
|
||||
|
||||
def logregobj(y_true, y_pred):
|
||||
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
|
||||
grad = y_pred - y_true
|
||||
hess = y_pred * (1.0 - y_pred)
|
||||
return grad, hess
|
||||
|
||||
|
||||
def test_classification_with_custom_objective():
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.model_selection import KFold
|
||||
|
||||
def logregobj(y_true, y_pred):
|
||||
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
|
||||
grad = y_pred - y_true
|
||||
hess = y_pred * (1.0 - y_pred)
|
||||
return grad, hess
|
||||
|
||||
digits = load_digits(n_class=2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
y = digits["target"]
|
||||
X = digits["data"]
|
||||
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
||||
for train_index, test_index in kf.split(X, y):
|
||||
xgb_model = xgb.XGBClassifier(objective=logregobj)
|
||||
xgb_model.fit(X[train_index], y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
labels = y[test_index]
|
||||
err = sum(1 for i in range(len(preds))
|
||||
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
||||
err = sum(
|
||||
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
||||
) / float(len(preds))
|
||||
assert err < 0.1
|
||||
|
||||
# Test that the custom objective function is actually used
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user