make wrapper ok

This commit is contained in:
tqchen 2014-11-23 14:03:59 -08:00
parent 69b2f31098
commit 5f08313cb2
15 changed files with 160 additions and 24 deletions

View File

@ -32,8 +32,8 @@ sync_tcp.o: src/sync/sync_tcp.cpp
sync_empty.o: src/sync/sync_empty.cpp
main.o: src/xgboost_main.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h
xgboost-mpi: updater.o gbm.o io.o main.o sync_mpi.o
xgboost: updater.o gbm.o io.o main.o sync_empty.o
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h updater.o gbm.o io.o sync_empty.o
xgboost: updater.o gbm.o io.o main.o sync_tcp.o
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h updater.o gbm.o io.o sync_tcp.o
$(BIN) :
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)

View File

@ -4,12 +4,12 @@ python mapfeat.py
# split train and test
python mknfold.py agaricus.txt 1
# training and output the models
mpirun ../../xgboost mushroom.conf
../../xgboost mushroom.conf
# output prediction task=pred
mpirun ../../xgboost mushroom.conf task=pred model_in=0002.model
../../xgboost mushroom.conf task=pred model_in=0002.model
# print the boosters of 00002.model in dump.raw.txt
mpirun ../../xgboost mushroom.conf task=dump model_in=0002.model name_dump=dump.raw.txt
../../xgboost mushroom.conf task=dump model_in=0002.model name_dump=dump.raw.txt
# use the feature map in printing for better visualization
mpirun ../../xgboost mushroom.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
../../xgboost mushroom.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
cat dump.nice.txt

View File

@ -4,5 +4,5 @@ python custom_objective.py
python boost_from_prediction.py
python generalized_linear_model.py
python cross_validation.py
python predict_leaf_index.py
rm -rf *~ *.model *.buffer
python predict_leaf_indices.py
rm -rf *~ *.model *.buffer

View File

@ -4,17 +4,21 @@ This folder contains information about experimental version of distributed xgboo
Build
=====
* You will need to have MPI
* In the root folder, run ```make mpi```, this will give you xgboost-mpi
- You will need to have MPI to build xgboost-mpi
* Alternatively, you can run ```make```, this will give you xgboost, which uses a beta buildin allreduce
- You do not need MPI to build this, you can modify [submit_job_tcp.py](submit_job_tcp.py) to use any job scheduler you like to submit the job
Design Choice
=====
* Does distributed xgboost reply on MPI?
- Yes, but the dependency is isolated in [sync module](../src/sync/sync.h)
* Does distributed xgboost must reply on MPI library?
- No, XGBoost replies on MPI protocol that provide Broadcast and AllReduce,
- The dependency is isolated in [sync module](../src/sync/sync.h)
- All other parts of code uses interface defined in sync.h
- sync_mpi.cpp is a implementation of sync interface using standard MPI library
- Specificially, xgboost reply on MPI protocol that provide Broadcast and AllReduce,
if there are platform/framework that implements these protocol, xgboost should naturally extends to these platform
- [sync_mpi.cpp](../src/sync/sync_mpi.cpp) is a implementation of sync interface using standard MPI library, to use xgboost-mpi, you need an MPI library
- If there are platform/framework that implements these protocol, xgboost should naturally extends to these platform
- As an example, [sync_tcp.cpp](../src/sync/sync_tcp.cpp) is an implementation of interface using TCP, and is linked with xgboost by default
* How is the data distributed?
- There are two solvers in distributed xgboost
- Column-based solver split data by column, each node work on subset of columns,
@ -26,10 +30,11 @@ Design Choice
Usage
====
* The current code run in MPI enviroment, you will need to have a network filesystem,
or copy data to local file system before running the code
* You will need a network filesystem, or copy data to local file system before running the code
* xgboost-mpi run in MPI enviroment,
* xgboost can be used together with [submit_job_tcp.py](submit_job_tcp.py) on other types of job schedulers
* ***Note*** The distributed version is still multi-threading optimized.
You should run one xgboost-mpi per node that takes most available CPU,
You should run one process per node that takes most available CPU,
this will reduce the communication overhead and improve the performance.
- One way to do that is limit mpi slot in each machine to be 1, or reserve nthread processors for each process.
* Examples:

View File

@ -1,6 +1,11 @@
Distributed XGBoost: Column Split Version
====
* run ```bash mushroom-row.sh <n-mpi-process>```
* run ```bash mushroom-col.sh <n-mpi-process>```
* run ```bash mushroom-col-tcp.sh <n-process>```
- mushroom-col-tcp.sh starts xgboost job using xgboost's buildin allreduce
* run ```bash mushroom-col-python.sh <n-process>```
- mushroom-col-python.sh starts xgboost python job using xgboost's buildin all reduce
- see mushroom-col.py
How to Use
====

View File

@ -0,0 +1,22 @@
#!/bin/bash
if [[ $# -ne 1 ]]
then
echo "Usage: nprocess"
exit -1
fi
#
# This script is same as mushroom-col except that we will be using xgboost python module
#
# xgboost used built in tcp-based allreduce module, and can be run on more enviroment, so long as we know how to start job by modifying ../submit_job_tcp.py
#
rm -rf train.col* *.model
k=$1
# split the lib svm file into k subfiles
python splitsvm.py ../../demo/data/agaricus.txt.train train $k
# run xgboost mpi
../submit_job_tcp.py $k python mushroom-col.py
cat dump.nice.$k.txt

View File

@ -0,0 +1,29 @@
import os
import sys
sys.path.append(os.path.dirname(__file__)+'/../wrapper')
import xgboost as xgb
# this is example script of running distributed xgboost using python
# call this additional function to intialize the xgboost sync module
# in distributed mode
xgb.sync_init(sys.argv)
rank = xgb.sync_get_rank()
# read in dataset
dtrain = xgb.DMatrix('train.col%d' % rank)
param = {'max_depth':3, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
param['dsplit'] = 'col'
nround = 3
if rank == 0:
dtest = xgb.DMatrix('../../demo/data/agaricus.txt.test')
model = xgb.train(param, dtrain, nround, [(dtrain, 'train') , (dtest, 'test')])
else:
# if it is a slave node, do not run evaluation
model = xgb.train(param, dtrain, nround)
if rank == 0:
model.save_model('%04d.model' % nround)
# dump model with feature map
model.dump_model('dump.nice.%d.txt' % xgb.sync_get_world_size(),'../../demo/data/featmap.txt')
# shutdown the synchronization module
xgb.sync_finalize()

View File

@ -11,6 +11,10 @@ import subprocess
sys.path.append(os.path.dirname(__file__)+'/../src/sync/')
import tcp_master as master
#
# Note: this submit script is only used for example purpose
# It does not have to be mpirun, it can be any job submission script that starts the job, qsub, hadoop streaming etc.
#
def mpi_submit(nslave, args):
"""
customized submit script, that submit nslave jobs, each must contain args as parameter

View File

@ -13,6 +13,11 @@
namespace xgboost {
namespace io {
DataMatrix* LoadDataMatrix(const char *fname, bool silent, bool savebuffer) {
if (!strcmp(fname, "stdin")) {
DMatrixSimple *dmat = new DMatrixSimple();
dmat->LoadText(fname, silent);
return dmat;
}
std::string tmp_fname;
const char *fname_ext = NULL;
if (strchr(fname, ';') != NULL) {

View File

@ -84,7 +84,12 @@ class DMatrixSimple : public DataMatrix {
inline void LoadText(const char* fname, bool silent = false) {
using namespace std;
this->Clear();
FILE* file = utils::FopenCheck(fname, "r");
FILE* file;
if (!strcmp(fname, "stdin")) {
file = stdin;
} else {
file = utils::FopenCheck(fname, "r");
}
float label; bool init = true;
char tmp[1024];
std::vector<RowBatch::Entry> feats;
@ -112,7 +117,9 @@ class DMatrixSimple : public DataMatrix {
static_cast<unsigned long>(info.num_col()),
static_cast<unsigned long>(row_data_.size()), fname);
}
fclose(file);
if (file != stdin) {
fclose(file);
}
// try to load in additional file
std::string name = fname;
std::string gname = name + ".group";

View File

@ -352,7 +352,7 @@ class SyncManager {
buffer_.resize(std::min(reduce_buffer_size, n));
// make sure align to type_nbytes
buffer_size = buffer_.size() * sizeof(uint64_t) / type_nbytes * type_nbytes;
utils::Assert(type_nbytes < buffer_size, "too large type_nbytes=%lu, buffer_size", type_nbytes, buffer_size);
utils::Assert(type_nbytes <= buffer_size, "too large type_nbytes=%lu, buffer_size=%lu", type_nbytes, buffer_size);
// set buffer head
buffer_head = reinterpret_cast<char*>(BeginPtr(buffer_));
}
@ -487,6 +487,8 @@ void AllReduce<uint32_t>(uint32_t *sendrecvbuf, int count, ReduceOp op) {
typedef uint32_t DType;
switch(op) {
case kBitwiseOR: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceBitOR<DType>); return;
case kSum: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceSum<DType>); return;
case kMax: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceMax<DType>); return;
default: utils::Error("reduce op not supported");
}
}

View File

@ -1,5 +1,5 @@
export CC = gcc
export CXX = clang++
export CXX = g++
export MPICXX = mpicxx
export LDFLAGS= -pthread -lm
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas -fPIC -I../src

View File

@ -33,7 +33,10 @@ xglib.XGBoosterCreate.restype = ctypes.c_void_p
xglib.XGBoosterPredict.restype = ctypes.POINTER(ctypes.c_float)
xglib.XGBoosterEvalOneIter.restype = ctypes.c_char_p
xglib.XGBoosterDumpModel.restype = ctypes.POINTER(ctypes.c_char_p)
# sync function
xglib.XGSyncGetRank.restype = ctypes.c_int
xglib.XGSyncGetWorldSize.restype = ctypes.c_int
# initialize communication module
def ctypes2numpy(cptr, length, dtype):
"""convert a ctypes pointer array to numpy array """
@ -553,3 +556,18 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, metrics=[], \
sys.stderr.write(res+'\n')
results.append(res)
return results
# synchronization module
def sync_init(args = sys.argv):
arr = (ctypes.c_char_p * len(args))()
arr[:] = args
xglib.XGSyncInit(len(args), arr)
def sync_finalize():
xglib.XGSyncFinalize()
def sync_get_rank():
return int(xglib.XGSyncGetRank())
def sync_get_world_size():
return int(xglib.XGSyncGetWorldSize())

View File

@ -80,6 +80,23 @@ class Booster: public learner::BoostLearner {
using namespace xgboost::wrapper;
extern "C"{
void XGSyncInit(int argc, char *argv[]) {
sync::Init(argc, argv);
if (sync::IsDistributed()) {
std::string pname = xgboost::sync::GetProcessorName();
utils::Printf("distributed job start %s:%d\n", pname.c_str(), xgboost::sync::GetRank());
}
}
void XGSyncFinalize(void) {
sync::Finalize();
}
int XGSyncGetRank(void) {
int rank = xgboost::sync::GetRank();
return rank;
}
int XGSyncGetWorldSize(void) {
return sync::GetWorldSize();
}
void* XGDMatrixCreateFromFile(const char *fname, int silent) {
return LoadDataMatrix(fname, silent != 0, false);
}

View File

@ -17,6 +17,28 @@ typedef unsigned long bst_ulong;
#ifdef __cplusplus
extern "C" {
#endif
/*!
* \brief initialize sync module, this is needed if used in distributed model
* normally, argv need to contain master_uri and master_port
* if start using submit_job_tcp script, then pass args to this will do
* \param argc number of arguments
* \param argv the arguments to be passed in sync module
*/
XGB_DLL void XGSyncInit(int argc, char *argv[]);
/*!
* \brief finalize sync module, call this when everything is done
*/
XGB_DLL void XGSyncFinalize(void);
/*!
* \brief get the rank
* \return return the rank of
*/
XGB_DLL int XGSyncGetRank(void);
/*!
* \brief get the world size from sync
* \return return the number of distributed job ran in the group
*/
XGB_DLL int XGSyncGetWorldSize(void);
/*!
* \brief load a data matrix
* \return a loaded data matrix
@ -41,7 +63,7 @@ extern "C" {
* \param col_ptr pointer to col headers
* \param indices findex
* \param data fvalue
* \param nindptr number of rows in the matix + 1
* \param nindptr number of rows in the matix + 1
* \param nelem number of nonzero elements in the matrix
* \return created dmatrix
*/