make wrapper ok
This commit is contained in:
parent
69b2f31098
commit
5f08313cb2
4
Makefile
4
Makefile
@ -32,8 +32,8 @@ sync_tcp.o: src/sync/sync_tcp.cpp
|
||||
sync_empty.o: src/sync/sync_empty.cpp
|
||||
main.o: src/xgboost_main.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h
|
||||
xgboost-mpi: updater.o gbm.o io.o main.o sync_mpi.o
|
||||
xgboost: updater.o gbm.o io.o main.o sync_empty.o
|
||||
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h updater.o gbm.o io.o sync_empty.o
|
||||
xgboost: updater.o gbm.o io.o main.o sync_tcp.o
|
||||
wrapper/libxgboostwrapper.so: wrapper/xgboost_wrapper.cpp src/utils/*.h src/*.h src/learner/*.hpp src/learner/*.h updater.o gbm.o io.o sync_tcp.o
|
||||
|
||||
$(BIN) :
|
||||
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)
|
||||
|
||||
@ -4,12 +4,12 @@ python mapfeat.py
|
||||
# split train and test
|
||||
python mknfold.py agaricus.txt 1
|
||||
# training and output the models
|
||||
mpirun ../../xgboost mushroom.conf
|
||||
../../xgboost mushroom.conf
|
||||
# output prediction task=pred
|
||||
mpirun ../../xgboost mushroom.conf task=pred model_in=0002.model
|
||||
../../xgboost mushroom.conf task=pred model_in=0002.model
|
||||
# print the boosters of 00002.model in dump.raw.txt
|
||||
mpirun ../../xgboost mushroom.conf task=dump model_in=0002.model name_dump=dump.raw.txt
|
||||
../../xgboost mushroom.conf task=dump model_in=0002.model name_dump=dump.raw.txt
|
||||
# use the feature map in printing for better visualization
|
||||
mpirun ../../xgboost mushroom.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
|
||||
../../xgboost mushroom.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
|
||||
cat dump.nice.txt
|
||||
|
||||
|
||||
@ -4,5 +4,5 @@ python custom_objective.py
|
||||
python boost_from_prediction.py
|
||||
python generalized_linear_model.py
|
||||
python cross_validation.py
|
||||
python predict_leaf_index.py
|
||||
rm -rf *~ *.model *.buffer
|
||||
python predict_leaf_indices.py
|
||||
rm -rf *~ *.model *.buffer
|
||||
|
||||
@ -4,17 +4,21 @@ This folder contains information about experimental version of distributed xgboo
|
||||
|
||||
Build
|
||||
=====
|
||||
* You will need to have MPI
|
||||
* In the root folder, run ```make mpi```, this will give you xgboost-mpi
|
||||
- You will need to have MPI to build xgboost-mpi
|
||||
* Alternatively, you can run ```make```, this will give you xgboost, which uses a beta buildin allreduce
|
||||
- You do not need MPI to build this, you can modify [submit_job_tcp.py](submit_job_tcp.py) to use any job scheduler you like to submit the job
|
||||
|
||||
Design Choice
|
||||
=====
|
||||
* Does distributed xgboost reply on MPI?
|
||||
- Yes, but the dependency is isolated in [sync module](../src/sync/sync.h)
|
||||
* Does distributed xgboost must reply on MPI library?
|
||||
- No, XGBoost replies on MPI protocol that provide Broadcast and AllReduce,
|
||||
- The dependency is isolated in [sync module](../src/sync/sync.h)
|
||||
- All other parts of code uses interface defined in sync.h
|
||||
- sync_mpi.cpp is a implementation of sync interface using standard MPI library
|
||||
- Specificially, xgboost reply on MPI protocol that provide Broadcast and AllReduce,
|
||||
if there are platform/framework that implements these protocol, xgboost should naturally extends to these platform
|
||||
- [sync_mpi.cpp](../src/sync/sync_mpi.cpp) is a implementation of sync interface using standard MPI library, to use xgboost-mpi, you need an MPI library
|
||||
- If there are platform/framework that implements these protocol, xgboost should naturally extends to these platform
|
||||
- As an example, [sync_tcp.cpp](../src/sync/sync_tcp.cpp) is an implementation of interface using TCP, and is linked with xgboost by default
|
||||
|
||||
* How is the data distributed?
|
||||
- There are two solvers in distributed xgboost
|
||||
- Column-based solver split data by column, each node work on subset of columns,
|
||||
@ -26,10 +30,11 @@ Design Choice
|
||||
|
||||
Usage
|
||||
====
|
||||
* The current code run in MPI enviroment, you will need to have a network filesystem,
|
||||
or copy data to local file system before running the code
|
||||
* You will need a network filesystem, or copy data to local file system before running the code
|
||||
* xgboost-mpi run in MPI enviroment,
|
||||
* xgboost can be used together with [submit_job_tcp.py](submit_job_tcp.py) on other types of job schedulers
|
||||
* ***Note*** The distributed version is still multi-threading optimized.
|
||||
You should run one xgboost-mpi per node that takes most available CPU,
|
||||
You should run one process per node that takes most available CPU,
|
||||
this will reduce the communication overhead and improve the performance.
|
||||
- One way to do that is limit mpi slot in each machine to be 1, or reserve nthread processors for each process.
|
||||
* Examples:
|
||||
|
||||
@ -1,6 +1,11 @@
|
||||
Distributed XGBoost: Column Split Version
|
||||
====
|
||||
* run ```bash mushroom-row.sh <n-mpi-process>```
|
||||
* run ```bash mushroom-col.sh <n-mpi-process>```
|
||||
* run ```bash mushroom-col-tcp.sh <n-process>```
|
||||
- mushroom-col-tcp.sh starts xgboost job using xgboost's buildin allreduce
|
||||
* run ```bash mushroom-col-python.sh <n-process>```
|
||||
- mushroom-col-python.sh starts xgboost python job using xgboost's buildin all reduce
|
||||
- see mushroom-col.py
|
||||
|
||||
How to Use
|
||||
====
|
||||
|
||||
22
multi-node/col-split/mushroom-col-python.sh
Executable file
22
multi-node/col-split/mushroom-col-python.sh
Executable file
@ -0,0 +1,22 @@
|
||||
#!/bin/bash
|
||||
if [[ $# -ne 1 ]]
|
||||
then
|
||||
echo "Usage: nprocess"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
#
|
||||
# This script is same as mushroom-col except that we will be using xgboost python module
|
||||
#
|
||||
# xgboost used built in tcp-based allreduce module, and can be run on more enviroment, so long as we know how to start job by modifying ../submit_job_tcp.py
|
||||
#
|
||||
rm -rf train.col* *.model
|
||||
k=$1
|
||||
|
||||
# split the lib svm file into k subfiles
|
||||
python splitsvm.py ../../demo/data/agaricus.txt.train train $k
|
||||
|
||||
# run xgboost mpi
|
||||
../submit_job_tcp.py $k python mushroom-col.py
|
||||
|
||||
cat dump.nice.$k.txt
|
||||
29
multi-node/col-split/mushroom-col.py
Normal file
29
multi-node/col-split/mushroom-col.py
Normal file
@ -0,0 +1,29 @@
|
||||
import os
|
||||
import sys
|
||||
sys.path.append(os.path.dirname(__file__)+'/../wrapper')
|
||||
import xgboost as xgb
|
||||
# this is example script of running distributed xgboost using python
|
||||
|
||||
# call this additional function to intialize the xgboost sync module
|
||||
# in distributed mode
|
||||
xgb.sync_init(sys.argv)
|
||||
rank = xgb.sync_get_rank()
|
||||
# read in dataset
|
||||
dtrain = xgb.DMatrix('train.col%d' % rank)
|
||||
param = {'max_depth':3, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
|
||||
param['dsplit'] = 'col'
|
||||
nround = 3
|
||||
|
||||
if rank == 0:
|
||||
dtest = xgb.DMatrix('../../demo/data/agaricus.txt.test')
|
||||
model = xgb.train(param, dtrain, nround, [(dtrain, 'train') , (dtest, 'test')])
|
||||
else:
|
||||
# if it is a slave node, do not run evaluation
|
||||
model = xgb.train(param, dtrain, nround)
|
||||
|
||||
if rank == 0:
|
||||
model.save_model('%04d.model' % nround)
|
||||
# dump model with feature map
|
||||
model.dump_model('dump.nice.%d.txt' % xgb.sync_get_world_size(),'../../demo/data/featmap.txt')
|
||||
# shutdown the synchronization module
|
||||
xgb.sync_finalize()
|
||||
@ -11,6 +11,10 @@ import subprocess
|
||||
sys.path.append(os.path.dirname(__file__)+'/../src/sync/')
|
||||
import tcp_master as master
|
||||
|
||||
#
|
||||
# Note: this submit script is only used for example purpose
|
||||
# It does not have to be mpirun, it can be any job submission script that starts the job, qsub, hadoop streaming etc.
|
||||
#
|
||||
def mpi_submit(nslave, args):
|
||||
"""
|
||||
customized submit script, that submit nslave jobs, each must contain args as parameter
|
||||
|
||||
@ -13,6 +13,11 @@
|
||||
namespace xgboost {
|
||||
namespace io {
|
||||
DataMatrix* LoadDataMatrix(const char *fname, bool silent, bool savebuffer) {
|
||||
if (!strcmp(fname, "stdin")) {
|
||||
DMatrixSimple *dmat = new DMatrixSimple();
|
||||
dmat->LoadText(fname, silent);
|
||||
return dmat;
|
||||
}
|
||||
std::string tmp_fname;
|
||||
const char *fname_ext = NULL;
|
||||
if (strchr(fname, ';') != NULL) {
|
||||
|
||||
@ -84,7 +84,12 @@ class DMatrixSimple : public DataMatrix {
|
||||
inline void LoadText(const char* fname, bool silent = false) {
|
||||
using namespace std;
|
||||
this->Clear();
|
||||
FILE* file = utils::FopenCheck(fname, "r");
|
||||
FILE* file;
|
||||
if (!strcmp(fname, "stdin")) {
|
||||
file = stdin;
|
||||
} else {
|
||||
file = utils::FopenCheck(fname, "r");
|
||||
}
|
||||
float label; bool init = true;
|
||||
char tmp[1024];
|
||||
std::vector<RowBatch::Entry> feats;
|
||||
@ -112,7 +117,9 @@ class DMatrixSimple : public DataMatrix {
|
||||
static_cast<unsigned long>(info.num_col()),
|
||||
static_cast<unsigned long>(row_data_.size()), fname);
|
||||
}
|
||||
fclose(file);
|
||||
if (file != stdin) {
|
||||
fclose(file);
|
||||
}
|
||||
// try to load in additional file
|
||||
std::string name = fname;
|
||||
std::string gname = name + ".group";
|
||||
|
||||
@ -352,7 +352,7 @@ class SyncManager {
|
||||
buffer_.resize(std::min(reduce_buffer_size, n));
|
||||
// make sure align to type_nbytes
|
||||
buffer_size = buffer_.size() * sizeof(uint64_t) / type_nbytes * type_nbytes;
|
||||
utils::Assert(type_nbytes < buffer_size, "too large type_nbytes=%lu, buffer_size", type_nbytes, buffer_size);
|
||||
utils::Assert(type_nbytes <= buffer_size, "too large type_nbytes=%lu, buffer_size=%lu", type_nbytes, buffer_size);
|
||||
// set buffer head
|
||||
buffer_head = reinterpret_cast<char*>(BeginPtr(buffer_));
|
||||
}
|
||||
@ -487,6 +487,8 @@ void AllReduce<uint32_t>(uint32_t *sendrecvbuf, int count, ReduceOp op) {
|
||||
typedef uint32_t DType;
|
||||
switch(op) {
|
||||
case kBitwiseOR: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceBitOR<DType>); return;
|
||||
case kSum: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceSum<DType>); return;
|
||||
case kMax: manager.AllReduce(sendrecvbuf, sizeof(DType), count, ReduceMax<DType>); return;
|
||||
default: utils::Error("reduce op not supported");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
export CC = gcc
|
||||
export CXX = clang++
|
||||
export CXX = g++
|
||||
export MPICXX = mpicxx
|
||||
export LDFLAGS= -pthread -lm
|
||||
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas -fPIC -I../src
|
||||
|
||||
@ -33,7 +33,10 @@ xglib.XGBoosterCreate.restype = ctypes.c_void_p
|
||||
xglib.XGBoosterPredict.restype = ctypes.POINTER(ctypes.c_float)
|
||||
xglib.XGBoosterEvalOneIter.restype = ctypes.c_char_p
|
||||
xglib.XGBoosterDumpModel.restype = ctypes.POINTER(ctypes.c_char_p)
|
||||
|
||||
# sync function
|
||||
xglib.XGSyncGetRank.restype = ctypes.c_int
|
||||
xglib.XGSyncGetWorldSize.restype = ctypes.c_int
|
||||
# initialize communication module
|
||||
|
||||
def ctypes2numpy(cptr, length, dtype):
|
||||
"""convert a ctypes pointer array to numpy array """
|
||||
@ -553,3 +556,18 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, metrics=[], \
|
||||
sys.stderr.write(res+'\n')
|
||||
results.append(res)
|
||||
return results
|
||||
|
||||
# synchronization module
|
||||
def sync_init(args = sys.argv):
|
||||
arr = (ctypes.c_char_p * len(args))()
|
||||
arr[:] = args
|
||||
xglib.XGSyncInit(len(args), arr)
|
||||
|
||||
def sync_finalize():
|
||||
xglib.XGSyncFinalize()
|
||||
|
||||
def sync_get_rank():
|
||||
return int(xglib.XGSyncGetRank())
|
||||
|
||||
def sync_get_world_size():
|
||||
return int(xglib.XGSyncGetWorldSize())
|
||||
|
||||
@ -80,6 +80,23 @@ class Booster: public learner::BoostLearner {
|
||||
using namespace xgboost::wrapper;
|
||||
|
||||
extern "C"{
|
||||
void XGSyncInit(int argc, char *argv[]) {
|
||||
sync::Init(argc, argv);
|
||||
if (sync::IsDistributed()) {
|
||||
std::string pname = xgboost::sync::GetProcessorName();
|
||||
utils::Printf("distributed job start %s:%d\n", pname.c_str(), xgboost::sync::GetRank());
|
||||
}
|
||||
}
|
||||
void XGSyncFinalize(void) {
|
||||
sync::Finalize();
|
||||
}
|
||||
int XGSyncGetRank(void) {
|
||||
int rank = xgboost::sync::GetRank();
|
||||
return rank;
|
||||
}
|
||||
int XGSyncGetWorldSize(void) {
|
||||
return sync::GetWorldSize();
|
||||
}
|
||||
void* XGDMatrixCreateFromFile(const char *fname, int silent) {
|
||||
return LoadDataMatrix(fname, silent != 0, false);
|
||||
}
|
||||
|
||||
@ -17,6 +17,28 @@ typedef unsigned long bst_ulong;
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/*!
|
||||
* \brief initialize sync module, this is needed if used in distributed model
|
||||
* normally, argv need to contain master_uri and master_port
|
||||
* if start using submit_job_tcp script, then pass args to this will do
|
||||
* \param argc number of arguments
|
||||
* \param argv the arguments to be passed in sync module
|
||||
*/
|
||||
XGB_DLL void XGSyncInit(int argc, char *argv[]);
|
||||
/*!
|
||||
* \brief finalize sync module, call this when everything is done
|
||||
*/
|
||||
XGB_DLL void XGSyncFinalize(void);
|
||||
/*!
|
||||
* \brief get the rank
|
||||
* \return return the rank of
|
||||
*/
|
||||
XGB_DLL int XGSyncGetRank(void);
|
||||
/*!
|
||||
* \brief get the world size from sync
|
||||
* \return return the number of distributed job ran in the group
|
||||
*/
|
||||
XGB_DLL int XGSyncGetWorldSize(void);
|
||||
/*!
|
||||
* \brief load a data matrix
|
||||
* \return a loaded data matrix
|
||||
@ -41,7 +63,7 @@ extern "C" {
|
||||
* \param col_ptr pointer to col headers
|
||||
* \param indices findex
|
||||
* \param data fvalue
|
||||
* \param nindptr number of rows in the matix + 1
|
||||
* \param nindptr number of rows in the matix + 1
|
||||
* \param nelem number of nonzero elements in the matrix
|
||||
* \return created dmatrix
|
||||
*/
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user