diff --git a/R-package/demo/caret_wrapper.R b/R-package/demo/caret_wrapper.R index 13e05e562..751b202b5 100644 --- a/R-package/demo/caret_wrapper.R +++ b/R-package/demo/caret_wrapper.R @@ -24,7 +24,7 @@ df[,ID:=NULL] #-------------Basic Training using XGBoost in caret Library----------------- # Set up control parameters for caret::train # Here we use 10-fold cross-validation, repeating twice, and using random search for tuning hyper-parameters. -fitControl <- trainControl(method = "cv", number = 10, repeats = 2, search = "random") +fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 2, search = "random") # train a xgbTree model using caret::train model <- train(factor(Improved)~., data = df, method = "xgbTree", trControl = fitControl)