[CI] Improve R linter script (#5944)
* [CI] Move lint to a separate script * [CI] Improved lintr launcher * Add lintr as a separate action * Add custom parsing logic to print out logs * Fix lintr issues in demos * Run R demos * Fix CRAN checks * Install XGBoost into R env before running lintr * Install devtools (needed to run demos)
This commit is contained in:
parent
8943eb4314
commit
5879acde9a
51
.github/workflows/main.yml
vendored
51
.github/workflows/main.yml
vendored
@ -6,6 +6,9 @@ name: XGBoost-CI
|
||||
# events but only for the master branch
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
R_PACKAGES: c('XML', 'igraph', 'data.table', 'magrittr', 'stringi', 'ggplot2', 'DiagrammeR', 'Ckmeans.1d.dp', 'vcd', 'testthat', 'lintr', 'knitr', 'rmarkdown', 'e1071', 'cplm', 'devtools')
|
||||
|
||||
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
|
||||
jobs:
|
||||
test-with-jvm:
|
||||
@ -38,6 +41,49 @@ jobs:
|
||||
mvn test -pl :xgboost4j_2.12
|
||||
|
||||
|
||||
lintr:
|
||||
runs-on: ${{ matrix.config.os }}
|
||||
|
||||
name: Run R linters on OS ${{ matrix.config.os }}, R ${{ matrix.config.r }}, Compiler ${{ matrix.config.compiler }}, Build ${{ matrix.config.build }}
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
- {os: windows-latest, r: 'release', compiler: 'mingw', build: 'autotools'}
|
||||
env:
|
||||
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
|
||||
RSPM: ${{ matrix.config.rspm }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
submodules: 'true'
|
||||
|
||||
- uses: r-lib/actions/setup-r@master
|
||||
with:
|
||||
r-version: ${{ matrix.config.r }}
|
||||
|
||||
- name: Cache R packages
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ${{ env.R_LIBS_USER }}
|
||||
key: ${{ runner.os }}-r-${{ matrix.config.r }}-1-${{ hashFiles('R-package/DESCRIPTION') }}
|
||||
restore-keys: ${{ runner.os }}-r-${{ matrix.config.r }}-2-
|
||||
|
||||
- name: Install dependencies
|
||||
shell: Rscript {0}
|
||||
run: |
|
||||
install.packages(${{ env.R_PACKAGES }},
|
||||
repos = 'http://cloud.r-project.org',
|
||||
dependencies = c('Depends', 'Imports', 'LinkingTo'))
|
||||
|
||||
- name: Run lintr
|
||||
run: |
|
||||
cd R-package
|
||||
R.exe CMD INSTALL .
|
||||
Rscript.exe tests/run_lint.R
|
||||
|
||||
|
||||
test-with-R:
|
||||
runs-on: ${{ matrix.config.os }}
|
||||
|
||||
@ -78,8 +124,9 @@ jobs:
|
||||
- name: Install dependencies
|
||||
shell: Rscript {0}
|
||||
run: |
|
||||
install.packages(c('XML','igraph'))
|
||||
install.packages(c('data.table','magrittr','stringi','ggplot2','DiagrammeR','Ckmeans.1d.dp','vcd','testthat','lintr','knitr','rmarkdown'))
|
||||
install.packages(${{ env.R_PACKAGES }},
|
||||
repos = 'http://cloud.r-project.org',
|
||||
dependencies = c('Depends', 'Imports', 'LinkingTo'))
|
||||
|
||||
- uses: actions/setup-python@v2
|
||||
with:
|
||||
|
||||
@ -54,7 +54,8 @@ Suggests:
|
||||
lintr,
|
||||
igraph (>= 1.0.1),
|
||||
jsonlite,
|
||||
float
|
||||
float,
|
||||
crayon
|
||||
Depends:
|
||||
R (>= 3.3.0)
|
||||
Imports:
|
||||
|
||||
@ -61,7 +61,7 @@ pred2 <- predict(bst2, test$data)
|
||||
print(paste("sum(abs(pred2-pred))=", sum(abs(pred2 - pred))))
|
||||
|
||||
# save model to R's raw vector
|
||||
raw = xgb.save.raw(bst)
|
||||
raw <- xgb.save.raw(bst)
|
||||
# load binary model to R
|
||||
bst3 <- xgb.load(raw)
|
||||
pred3 <- predict(bst3, test$data)
|
||||
@ -93,13 +93,13 @@ dtrain2 <- xgb.DMatrix("dtrain.buffer")
|
||||
bst <- xgb.train(data = dtrain2, max_depth = 2, eta = 1, nrounds = 2, watchlist = watchlist,
|
||||
nthread = 2, objective = "binary:logistic")
|
||||
# information can be extracted from xgb.DMatrix using getinfo
|
||||
label = getinfo(dtest, "label")
|
||||
label <- getinfo(dtest, "label")
|
||||
pred <- predict(bst, dtest)
|
||||
err <- as.numeric(sum(as.integer(pred > 0.5) != label)) / length(label)
|
||||
print(paste("test-error=", err))
|
||||
|
||||
# You can dump the tree you learned using xgb.dump into a text file
|
||||
dump_path = file.path(tempdir(), 'dump.raw.txt')
|
||||
dump_path <- file.path(tempdir(), 'dump.raw.txt')
|
||||
xgb.dump(bst, dump_path, with_stats = TRUE)
|
||||
|
||||
# Finally, you can check which features are the most important.
|
||||
|
||||
@ -52,7 +52,7 @@ print(levels(df[,Treatment]))
|
||||
#
|
||||
# Formulae Improved~.-1 used below means transform all categorical features but column Improved to binary values.
|
||||
# Column Improved is excluded because it will be our output column, the one we want to predict.
|
||||
sparse_matrix = sparse.model.matrix(Improved~.-1, data = df)
|
||||
sparse_matrix <- sparse.model.matrix(Improved ~ . - 1, data = df)
|
||||
|
||||
cat("Encoding of the sparse Matrix\n")
|
||||
print(sparse_matrix)
|
||||
@ -61,7 +61,7 @@ print(sparse_matrix)
|
||||
# 1. Set, for all rows, field in Y column to 0;
|
||||
# 2. set Y to 1 when Improved == Marked;
|
||||
# 3. Return Y column
|
||||
output_vector = df[,Y:=0][Improved == "Marked",Y:=1][,Y]
|
||||
output_vector <- df[, Y := 0][Improved == "Marked", Y := 1][, Y]
|
||||
|
||||
# Following is the same process as other demo
|
||||
cat("Learning...\n")
|
||||
|
||||
@ -31,4 +31,3 @@ bst <- xgb.train(param, dtrain, num_round, watchlist)
|
||||
ypred <- predict(bst, dtest)
|
||||
labels <- getinfo(dtest, 'label')
|
||||
cat('error of preds=', mean(as.numeric(ypred > 0.5) != labels), '\n')
|
||||
|
||||
|
||||
@ -5,7 +5,9 @@ set.seed(1024)
|
||||
|
||||
# Function to obtain a list of interactions fitted in trees, requires input of maximum depth
|
||||
treeInteractions <- function(input_tree, input_max_depth) {
|
||||
trees <- copy(input_tree) # copy tree input to prevent overwriting
|
||||
ID_merge <- i.id <- i.feature <- NULL # Suppress warning "no visible binding for global variable"
|
||||
|
||||
trees <- data.table::copy(input_tree) # copy tree input to prevent overwriting
|
||||
if (input_max_depth < 2) return(list()) # no interactions if max depth < 2
|
||||
if (nrow(input_tree) == 1) return(list())
|
||||
|
||||
@ -15,22 +17,25 @@ treeInteractions <- function(input_tree, input_max_depth){
|
||||
parents_left <- trees[!is.na(Split), list(i.id = ID, i.feature = Feature, ID_merge = Yes)]
|
||||
parents_right <- trees[!is.na(Split), list(i.id = ID, i.feature = Feature, ID_merge = No)]
|
||||
|
||||
setorderv(trees, 'ID_merge')
|
||||
setorderv(parents_left, 'ID_merge')
|
||||
setorderv(parents_right, 'ID_merge')
|
||||
data.table::setorderv(trees, 'ID_merge')
|
||||
data.table::setorderv(parents_left, 'ID_merge')
|
||||
data.table::setorderv(parents_right, 'ID_merge')
|
||||
|
||||
trees <- merge(trees, parents_left, by = 'ID_merge', all.x = TRUE)
|
||||
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
|
||||
trees[!is.na(i.id), c(paste0('parent_', i - 1), paste0('parent_feat_', i - 1))
|
||||
:= list(i.id, i.feature)]
|
||||
trees[, c('i.id', 'i.feature') := NULL]
|
||||
|
||||
trees <- merge(trees, parents_right, by = 'ID_merge', all.x = TRUE)
|
||||
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
|
||||
trees[!is.na(i.id), c(paste0('parent_', i - 1), paste0('parent_feat_', i - 1))
|
||||
:= list(i.id, i.feature)]
|
||||
trees[, c('i.id', 'i.feature') := NULL]
|
||||
}
|
||||
|
||||
# Extract nodes with interactions
|
||||
interaction_trees <- trees[!is.na(Split) & !is.na(parent_1),
|
||||
c('Feature',paste0('parent_feat_',1:(input_max_depth-1))), with=FALSE]
|
||||
c('Feature', paste0('parent_feat_', 1:(input_max_depth - 1))),
|
||||
with = FALSE]
|
||||
interaction_trees_split <- split(interaction_trees, 1:nrow(interaction_trees))
|
||||
interaction_list <- lapply(interaction_trees_split, as.character)
|
||||
|
||||
@ -48,13 +53,14 @@ treeInteractions <- function(input_tree, input_max_depth){
|
||||
# Generate sample data
|
||||
x <- list()
|
||||
for (i in 1:10) {
|
||||
x[[i]] = i*rnorm(1000, 10)
|
||||
x[[i]] <- i * rnorm(1000, 10)
|
||||
}
|
||||
x <- as.data.table(x)
|
||||
|
||||
y = -1*x[, rowSums(.SD)] + x[['V1']]*x[['V2']] + x[['V3']]*x[['V4']]*x[['V5']] + rnorm(1000, 0.001) + 3*sin(x[['V7']])
|
||||
y <- -1 * x[, rowSums(.SD)] + x[['V1']] * x[['V2']] + x[['V3']] * x[['V4']] * x[['V5']]
|
||||
+ rnorm(1000, 0.001) + 3 * sin(x[['V7']])
|
||||
|
||||
train = as.matrix(x)
|
||||
train <- as.matrix(x)
|
||||
|
||||
# Interaction constraint list (column names form)
|
||||
interaction_list <- list(c('V1', 'V2'), c('V3', 'V4', 'V5'))
|
||||
@ -65,31 +71,33 @@ cols2ids <- function(object, col_names) {
|
||||
names(LUT) <- col_names
|
||||
rapply(object, function(x) LUT[x], classes = "character", how = "replace")
|
||||
}
|
||||
interaction_list_fid = cols2ids(interaction_list, colnames(train))
|
||||
interaction_list_fid <- cols2ids(interaction_list, colnames(train))
|
||||
|
||||
# Fit model with interaction constraints
|
||||
bst = xgboost(data = train, label = y, max_depth = 4,
|
||||
bst <- xgboost(data = train, label = y, max_depth = 4,
|
||||
eta = 0.1, nthread = 2, nrounds = 1000,
|
||||
interaction_constraints = interaction_list_fid)
|
||||
|
||||
bst_tree <- xgb.model.dt.tree(colnames(train), bst)
|
||||
bst_interactions <- treeInteractions(bst_tree, 4) # interactions constrained to combinations of V1*V2 and V3*V4*V5
|
||||
bst_interactions <- treeInteractions(bst_tree, 4)
|
||||
# interactions constrained to combinations of V1*V2 and V3*V4*V5
|
||||
|
||||
# Fit model without interaction constraints
|
||||
bst2 = xgboost(data = train, label = y, max_depth = 4,
|
||||
bst2 <- xgboost(data = train, label = y, max_depth = 4,
|
||||
eta = 0.1, nthread = 2, nrounds = 1000)
|
||||
|
||||
bst2_tree <- xgb.model.dt.tree(colnames(train), bst2)
|
||||
bst2_interactions <- treeInteractions(bst2_tree, 4) # much more interactions
|
||||
|
||||
# Fit model with both interaction and monotonicity constraints
|
||||
bst3 = xgboost(data = train, label = y, max_depth = 4,
|
||||
bst3 <- xgboost(data = train, label = y, max_depth = 4,
|
||||
eta = 0.1, nthread = 2, nrounds = 1000,
|
||||
interaction_constraints = interaction_list_fid,
|
||||
monotone_constraints = c(-1, 0, 0, 0, 0, 0, 0, 0, 0, 0))
|
||||
|
||||
bst3_tree <- xgb.model.dt.tree(colnames(train), bst3)
|
||||
bst3_interactions <- treeInteractions(bst3_tree, 4) # interactions still constrained to combinations of V1*V2 and V3*V4*V5
|
||||
bst3_interactions <- treeInteractions(bst3_tree, 4)
|
||||
# interactions still constrained to combinations of V1*V2 and V3*V4*V5
|
||||
|
||||
# Show monotonic constraints still apply by checking scores after incrementing V1
|
||||
x1 <- sort(unique(x[['V1']]))
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
data(mtcars)
|
||||
head(mtcars)
|
||||
bst = xgboost(data=as.matrix(mtcars[,-11]),label=mtcars[,11],
|
||||
bst <- xgboost(data = as.matrix(mtcars[, -11]), label = mtcars[, 11],
|
||||
objective = 'count:poisson', nrounds = 5)
|
||||
pred = predict(bst,as.matrix(mtcars[,-11]))
|
||||
pred <- predict(bst, as.matrix(mtcars[, -11]))
|
||||
sqrt(mean((pred - mtcars[, 11]) ^ 2))
|
||||
|
||||
|
||||
@ -7,17 +7,17 @@ dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
|
||||
|
||||
param <- list(max_depth = 2, eta = 1, objective = 'binary:logistic')
|
||||
watchlist <- list(eval = dtest, train = dtrain)
|
||||
nrounds = 2
|
||||
nrounds <- 2
|
||||
|
||||
# training the model for two rounds
|
||||
bst = xgb.train(param, dtrain, nrounds, nthread = 2, watchlist)
|
||||
bst <- xgb.train(param, dtrain, nrounds, nthread = 2, watchlist)
|
||||
cat('start testing prediction from first n trees\n')
|
||||
labels <- getinfo(dtest, 'label')
|
||||
|
||||
### predict using first 1 tree
|
||||
ypred1 = predict(bst, dtest, ntreelimit=1)
|
||||
ypred1 <- predict(bst, dtest, ntreelimit = 1)
|
||||
# by default, we predict using all the trees
|
||||
ypred2 = predict(bst, dtest)
|
||||
ypred2 <- predict(bst, dtest)
|
||||
|
||||
cat('error of ypred1=', mean(as.numeric(ypred1 > 0.5) != labels), '\n')
|
||||
cat('error of ypred2=', mean(as.numeric(ypred2 > 0.5) != labels), '\n')
|
||||
|
||||
@ -11,17 +11,17 @@ dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label)
|
||||
dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label)
|
||||
|
||||
param <- list(max_depth = 2, eta = 1, objective = 'binary:logistic')
|
||||
nrounds = 4
|
||||
nrounds <- 4
|
||||
|
||||
# training the model for two rounds
|
||||
bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
|
||||
bst <- xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)
|
||||
|
||||
# Model accuracy without new features
|
||||
accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) / length(agaricus.test$label)
|
||||
accuracy.before <- (sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label)
|
||||
/ length(agaricus.test$label))
|
||||
|
||||
# by default, we predict using all the trees
|
||||
|
||||
pred_with_leaf = predict(bst, dtest, predleaf = TRUE)
|
||||
pred_with_leaf <- predict(bst, dtest, predleaf = TRUE)
|
||||
head(pred_with_leaf)
|
||||
|
||||
create.new.tree.features <- function(model, original.features){
|
||||
@ -47,7 +47,9 @@ watchlist <- list(train = new.dtrain)
|
||||
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)
|
||||
|
||||
# Model accuracy with new features
|
||||
accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) / length(agaricus.test$label)
|
||||
accuracy.after <- (sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label)
|
||||
/ length(agaricus.test$label))
|
||||
|
||||
# Here the accuracy was already good and is now perfect.
|
||||
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now", accuracy.after, "!\n"))
|
||||
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now",
|
||||
accuracy.after, "!\n"))
|
||||
|
||||
@ -1,14 +1,14 @@
|
||||
# running all scripts in demo folder
|
||||
demo(basic_walkthrough)
|
||||
demo(custom_objective)
|
||||
demo(boost_from_prediction)
|
||||
demo(predict_first_ntree)
|
||||
demo(generalized_linear_model)
|
||||
demo(cross_validation)
|
||||
demo(create_sparse_matrix)
|
||||
demo(predict_leaf_indices)
|
||||
demo(early_stopping)
|
||||
demo(poisson_regression)
|
||||
demo(caret_wrapper)
|
||||
demo(tweedie_regression)
|
||||
#demo(gpu_accelerated) # can only run when built with GPU support
|
||||
demo(basic_walkthrough, package = 'xgboost')
|
||||
demo(custom_objective, package = 'xgboost')
|
||||
demo(boost_from_prediction, package = 'xgboost')
|
||||
demo(predict_first_ntree, package = 'xgboost')
|
||||
demo(generalized_linear_model, package = 'xgboost')
|
||||
demo(cross_validation, package = 'xgboost')
|
||||
demo(create_sparse_matrix, package = 'xgboost')
|
||||
demo(predict_leaf_indices, package = 'xgboost')
|
||||
demo(early_stopping, package = 'xgboost')
|
||||
demo(poisson_regression, package = 'xgboost')
|
||||
demo(caret_wrapper, package = 'xgboost')
|
||||
demo(tweedie_regression, package = 'xgboost')
|
||||
#demo(gpu_accelerated, package = 'xgboost') # can only run when built with GPU support
|
||||
|
||||
0
R-package/demo/tweedie_regression.R
Executable file → Normal file
0
R-package/demo/tweedie_regression.R
Executable file → Normal file
71
R-package/tests/run_lint.R
Normal file
71
R-package/tests/run_lint.R
Normal file
@ -0,0 +1,71 @@
|
||||
library(lintr)
|
||||
library(crayon)
|
||||
|
||||
my_linters <- list(
|
||||
absolute_path_linter = lintr::absolute_path_linter,
|
||||
assignment_linter = lintr::assignment_linter,
|
||||
closed_curly_linter = lintr::closed_curly_linter,
|
||||
commas_linter = lintr::commas_linter,
|
||||
# commented_code_linter = lintr::commented_code_linter,
|
||||
infix_spaces_linter = lintr::infix_spaces_linter,
|
||||
line_length_linter = lintr::line_length_linter,
|
||||
no_tab_linter = lintr::no_tab_linter,
|
||||
object_usage_linter = lintr::object_usage_linter,
|
||||
# snake_case_linter = lintr::snake_case_linter,
|
||||
# multiple_dots_linter = lintr::multiple_dots_linter,
|
||||
object_length_linter = lintr::object_length_linter,
|
||||
open_curly_linter = lintr::open_curly_linter,
|
||||
# single_quotes_linter = lintr::single_quotes_linter,
|
||||
spaces_inside_linter = lintr::spaces_inside_linter,
|
||||
spaces_left_parentheses_linter = lintr::spaces_left_parentheses_linter,
|
||||
trailing_blank_lines_linter = lintr::trailing_blank_lines_linter,
|
||||
trailing_whitespace_linter = lintr::trailing_whitespace_linter,
|
||||
true_false = lintr::T_and_F_symbol_linter
|
||||
)
|
||||
|
||||
results <- lapply(
|
||||
list.files(path = '.', pattern = '\\.[Rr]$', recursive = TRUE),
|
||||
function (r_file) {
|
||||
cat(sprintf("Processing %s ...\n", r_file))
|
||||
list(r_file = r_file,
|
||||
output = lintr::lint(filename = r_file, linters = my_linters))
|
||||
})
|
||||
num_issue <- Reduce(sum, lapply(results, function (e) length(e$output)))
|
||||
|
||||
lint2str <- function(lint_entry) {
|
||||
color <- function(type) {
|
||||
switch(type,
|
||||
"warning" = crayon::magenta,
|
||||
"error" = crayon::red,
|
||||
"style" = crayon::blue,
|
||||
crayon::bold
|
||||
)
|
||||
}
|
||||
|
||||
paste0(
|
||||
lapply(lint_entry$output,
|
||||
function (lint_line) {
|
||||
paste0(
|
||||
crayon::bold(lint_entry$r_file, ":",
|
||||
as.character(lint_line$line_number), ":",
|
||||
as.character(lint_line$column_number), ": ", sep = ""),
|
||||
color(lint_line$type)(lint_line$type, ": ", sep = ""),
|
||||
crayon::bold(lint_line$message), "\n",
|
||||
lint_line$line, "\n",
|
||||
lintr:::highlight_string(lint_line$message, lint_line$column_number, lint_line$ranges),
|
||||
"\n",
|
||||
collapse = "")
|
||||
}),
|
||||
collapse = "")
|
||||
}
|
||||
|
||||
if (num_issue > 0) {
|
||||
cat(sprintf('R linters found %d issues:\n', num_issue))
|
||||
for (entry in results) {
|
||||
if (length(entry$output)) {
|
||||
cat(paste0('**** ', crayon::bold(entry$r_file), '\n'))
|
||||
cat(paste0(lint2str(entry), collapse = ''))
|
||||
}
|
||||
}
|
||||
quit(save = 'no', status = 1) # Signal error to parent shell
|
||||
}
|
||||
@ -1,26 +0,0 @@
|
||||
context("Code is of high quality and lint free")
|
||||
test_that("Code Lint", {
|
||||
skip_on_cran()
|
||||
my_linters <- list(
|
||||
absolute_path_linter = lintr::absolute_path_linter,
|
||||
assignment_linter = lintr::assignment_linter,
|
||||
closed_curly_linter = lintr::closed_curly_linter,
|
||||
commas_linter = lintr::commas_linter,
|
||||
# commented_code_linter = lintr::commented_code_linter,
|
||||
infix_spaces_linter = lintr::infix_spaces_linter,
|
||||
line_length_linter = lintr::line_length_linter,
|
||||
no_tab_linter = lintr::no_tab_linter,
|
||||
object_usage_linter = lintr::object_usage_linter,
|
||||
# snake_case_linter = lintr::snake_case_linter,
|
||||
# multiple_dots_linter = lintr::multiple_dots_linter,
|
||||
object_length_linter = lintr::object_length_linter,
|
||||
open_curly_linter = lintr::open_curly_linter,
|
||||
# single_quotes_linter = lintr::single_quotes_linter,
|
||||
spaces_inside_linter = lintr::spaces_inside_linter,
|
||||
spaces_left_parentheses_linter = lintr::spaces_left_parentheses_linter,
|
||||
trailing_blank_lines_linter = lintr::trailing_blank_lines_linter,
|
||||
trailing_whitespace_linter = lintr::trailing_whitespace_linter,
|
||||
true_false = lintr::T_and_F_symbol_linter
|
||||
)
|
||||
lintr::expect_lint_free(linters = my_linters) # uncomment this if you want to check code quality
|
||||
})
|
||||
@ -7,8 +7,8 @@ context("Models from previous versions of XGBoost can be loaded")
|
||||
metadata <- model_generator_metadata()
|
||||
|
||||
run_model_param_check <- function (config) {
|
||||
expect_equal(config$learner$learner_model_param$num_feature, '4')
|
||||
expect_equal(config$learner$learner_train_param$booster, 'gbtree')
|
||||
testthat::expect_equal(config$learner$learner_model_param$num_feature, '4')
|
||||
testthat::expect_equal(config$learner$learner_train_param$booster, 'gbtree')
|
||||
}
|
||||
|
||||
get_num_tree <- function (booster) {
|
||||
@ -27,22 +27,24 @@ run_booster_check <- function (booster, name) {
|
||||
config <- jsonlite::fromJSON(xgb.config(booster))
|
||||
run_model_param_check(config)
|
||||
if (name == 'cls') {
|
||||
expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds * metadata$kClasses)
|
||||
expect_equal(as.numeric(config$learner$learner_model_param$base_score), 0.5)
|
||||
expect_equal(config$learner$learner_train_param$objective, 'multi:softmax')
|
||||
expect_equal(as.numeric(config$learner$learner_model_param$num_class), metadata$kClasses)
|
||||
testthat::expect_equal(get_num_tree(booster),
|
||||
metadata$kForests * metadata$kRounds * metadata$kClasses)
|
||||
testthat::expect_equal(as.numeric(config$learner$learner_model_param$base_score), 0.5)
|
||||
testthat::expect_equal(config$learner$learner_train_param$objective, 'multi:softmax')
|
||||
testthat::expect_equal(as.numeric(config$learner$learner_model_param$num_class),
|
||||
metadata$kClasses)
|
||||
} else if (name == 'logit') {
|
||||
expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
expect_equal(as.numeric(config$learner$learner_model_param$num_class), 0)
|
||||
expect_equal(config$learner$learner_train_param$objective, 'binary:logistic')
|
||||
testthat::expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
testthat::expect_equal(as.numeric(config$learner$learner_model_param$num_class), 0)
|
||||
testthat::expect_equal(config$learner$learner_train_param$objective, 'binary:logistic')
|
||||
} else if (name == 'ltr') {
|
||||
expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
expect_equal(config$learner$learner_train_param$objective, 'rank:ndcg')
|
||||
testthat::expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
testthat::expect_equal(config$learner$learner_train_param$objective, 'rank:ndcg')
|
||||
} else {
|
||||
expect_equal(name, 'reg')
|
||||
expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
expect_equal(as.numeric(config$learner$learner_model_param$base_score), 0.5)
|
||||
expect_equal(config$learner$learner_train_param$objective, 'reg:squarederror')
|
||||
testthat::expect_equal(name, 'reg')
|
||||
testthat::expect_equal(get_num_tree(booster), metadata$kForests * metadata$kRounds)
|
||||
testthat::expect_equal(as.numeric(config$learner$learner_model_param$base_score), 0.5)
|
||||
testthat::expect_equal(config$learner$learner_train_param$objective, 'reg:squarederror')
|
||||
}
|
||||
}
|
||||
|
||||
@ -73,5 +75,4 @@ test_that("Models from previous versions of XGBoost can be loaded", {
|
||||
predict(booster, newdata = pred_data)
|
||||
run_booster_check(booster, name)
|
||||
})
|
||||
expect_true(TRUE)
|
||||
})
|
||||
|
||||
@ -46,6 +46,10 @@ def test_with_autotools(args):
|
||||
'R.exe', '-q', '-e',
|
||||
"library(testthat); setwd('tests'); source('testthat.R')"
|
||||
])
|
||||
subprocess.check_call([
|
||||
'R.exe', '-q', '-e',
|
||||
"demo(runall, package = 'xgboost')"
|
||||
])
|
||||
|
||||
|
||||
def test_with_cmake(args):
|
||||
@ -79,6 +83,10 @@ def test_with_cmake(args):
|
||||
'R.exe', '-q', '-e',
|
||||
"library(testthat); setwd('tests'); source('testthat.R')"
|
||||
])
|
||||
subprocess.check_call([
|
||||
'R.exe', '-q', '-e',
|
||||
"demo(runall, package = 'xgboost')"
|
||||
])
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user