[backport] Fix monotone constraints on CPU. (#9122) (#9287)

* [backport] Fix monotone constraints on CPU. (#9122)
This commit is contained in:
Jiaming Yuan 2023-06-11 17:51:25 +08:00 committed by GitHub
parent abc80d2a6d
commit 573f1c7db4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 39 additions and 0 deletions

View File

@ -389,6 +389,7 @@ class HistEvaluator {
tree_evaluator_.AddSplit(candidate.nid, left_child, right_child, tree_evaluator_.AddSplit(candidate.nid, left_child, right_child,
tree[candidate.nid].SplitIndex(), left_weight, tree[candidate.nid].SplitIndex(), left_weight,
right_weight); right_weight);
evaluator = tree_evaluator_.GetEvaluator();
auto max_node = std::max(left_child, tree[candidate.nid].RightChild()); auto max_node = std::max(left_child, tree[candidate.nid].RightChild());
max_node = std::max(candidate.nid, max_node); max_node = std::max(candidate.nid, max_node);

View File

@ -48,6 +48,8 @@ class TreeEvaluator {
monotone_.HostVector().resize(n_features, 0); monotone_.HostVector().resize(n_features, 0);
has_constraint_ = false; has_constraint_ = false;
} else { } else {
CHECK_LE(p.monotone_constraints.size(), n_features)
<< "The size of monotone constraint should be less or equal to the number of features.";
monotone_.HostVector() = p.monotone_constraints; monotone_.HostVector() = p.monotone_constraints;
monotone_.HostVector().resize(n_features, 0); monotone_.HostVector().resize(n_features, 0);
// Initialised to some small size, can grow if needed // Initialised to some small size, can grow if needed

View File

@ -6,6 +6,9 @@
#include <string> #include <string>
#include "../../../src/tree/constraints.h" #include "../../../src/tree/constraints.h"
#include "../../../src/tree/hist/evaluate_splits.h"
#include "../../../src/tree/hist/expand_entry.h"
#include "../helpers.h"
namespace xgboost { namespace xgboost {
namespace tree { namespace tree {
@ -56,5 +59,38 @@ TEST(CPUFeatureInteractionConstraint, Basic) {
ASSERT_FALSE(constraints.Query(1, 5)); ASSERT_FALSE(constraints.Query(1, 5));
} }
TEST(CPUMonoConstraint, Basic) {
std::size_t kRows{64}, kCols{16};
Context ctx;
TrainParam param;
std::vector<std::int32_t> mono(kCols, 1);
I32Array arr;
for (std::size_t i = 0; i < kCols; ++i) {
arr.GetArray().push_back(mono[i]);
}
Json jarr{std::move(arr)};
std::string str_mono;
Json::Dump(jarr, &str_mono);
str_mono.front() = '(';
str_mono.back() = ')';
param.UpdateAllowUnknown(Args{{"monotone_constraints", str_mono}});
auto Xy = RandomDataGenerator{kRows, kCols, 0.0}.GenerateDMatrix(true);
auto sampler = std::make_shared<common::ColumnSampler>();
HistEvaluator<CPUExpandEntry> evalutor{param, Xy->Info(), ctx.Threads(), sampler};
evalutor.InitRoot(GradStats{2.0, 2.0});
SplitEntry split;
split.Update(1.0f, 0, 3.0, false, false, GradStats{1.0, 1.0}, GradStats{1.0, 1.0});
CPUExpandEntry entry{0, 0, split};
RegTree tree;
tree.param.UpdateAllowUnknown(Args{{"num_feature", std::to_string(kCols)}});
evalutor.ApplyTreeSplit(entry, &tree);
ASSERT_TRUE(evalutor.Evaluator().has_constraint);
}
} // namespace tree } // namespace tree
} // namespace xgboost } // namespace xgboost