Add docs fro update_seq (#1735)
* Fix typos and messages in docs * parameter.md: Add docs for updater_seq Mention the updater_seq parameter which sets the order of the tree updaters to run and also specifies which ones to run. This can be useful when pruning is not required or even a custom plugin is being built along with xgboost.
This commit is contained in:
parent
b94fcab4dc
commit
52b9867be5
@ -3,7 +3,9 @@ XGBoost4J Java API
|
|||||||
This tutorial introduces
|
This tutorial introduces
|
||||||
|
|
||||||
## Data Interface
|
## Data Interface
|
||||||
Like the xgboost python module, xgboost4j use ```DMatrix``` to handle data, libsvm txt format file, sparse matrix in CSR/CSC format, and dense matrix is supported.
|
Like the xgboost python module, xgboost4j uses ```DMatrix``` to handle data,
|
||||||
|
libsvm txt format file, sparse matrix in CSR/CSC format, and dense matrix is
|
||||||
|
supported.
|
||||||
|
|
||||||
* To import ```DMatrix``` :
|
* To import ```DMatrix``` :
|
||||||
```java
|
```java
|
||||||
@ -97,7 +99,7 @@ import org.dmlc.xgboost4j.util.Trainer;
|
|||||||
```java
|
```java
|
||||||
DMatrix trainMat = new DMatrix("train.svm.txt");
|
DMatrix trainMat = new DMatrix("train.svm.txt");
|
||||||
DMatrix validMat = new DMatrix("valid.svm.txt");
|
DMatrix validMat = new DMatrix("valid.svm.txt");
|
||||||
//specifiy a watchList to see the performance
|
//specify a watchList to see the performance
|
||||||
//any Iterable<Entry<String, DMatrix>> object could be used as watchList
|
//any Iterable<Entry<String, DMatrix>> object could be used as watchList
|
||||||
List<Entry<String, DMatrix>> watchs = new ArrayList<>();
|
List<Entry<String, DMatrix>> watchs = new ArrayList<>();
|
||||||
watchs.add(new SimpleEntry<>("train", trainMat));
|
watchs.add(new SimpleEntry<>("train", trainMat));
|
||||||
|
|||||||
@ -73,6 +73,8 @@ Parameters for Tree Booster
|
|||||||
- range: (0, 1)
|
- range: (0, 1)
|
||||||
* scale_pos_weight, [default=1]
|
* scale_pos_weight, [default=1]
|
||||||
- Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases) See [Parameters Tuning](how_to/param_tuning.md) for more discussion. Also see Higgs Kaggle competition demo for examples: [R](../demo/kaggle-higgs/higgs-train.R ), [py1](../demo/kaggle-higgs/higgs-numpy.py ), [py2](../demo/kaggle-higgs/higgs-cv.py ), [py3](../demo/guide-python/cross_validation.py)
|
- Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases) See [Parameters Tuning](how_to/param_tuning.md) for more discussion. Also see Higgs Kaggle competition demo for examples: [R](../demo/kaggle-higgs/higgs-train.R ), [py1](../demo/kaggle-higgs/higgs-numpy.py ), [py2](../demo/kaggle-higgs/higgs-cv.py ), [py3](../demo/guide-python/cross_validation.py)
|
||||||
|
* updater_seq, [default="grow_colmaker,prune"]
|
||||||
|
- A comma separated string mentioning tThe sequence of Tree updaters that should be run. A tree updater is a pluggable operation performed on the tree at every step using the gradient information. Tree updaters can be registered using the plugin system provided.
|
||||||
|
|
||||||
Additional parameters for Dart Booster
|
Additional parameters for Dart Booster
|
||||||
--------------------------------------
|
--------------------------------------
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user