parent
808f61081b
commit
5199b86126
@ -313,7 +313,7 @@ SEXP XGBoosterPredict_R(SEXP handle, SEXP dmat, SEXP option_mask,
|
|||||||
R_ExternalPtrAddr(dmat),
|
R_ExternalPtrAddr(dmat),
|
||||||
asInteger(option_mask),
|
asInteger(option_mask),
|
||||||
asInteger(ntree_limit),
|
asInteger(ntree_limit),
|
||||||
0,
|
asInteger(training),
|
||||||
&olen, &res));
|
&olen, &res));
|
||||||
ret = PROTECT(allocVector(REALSXP, olen));
|
ret = PROTECT(allocVector(REALSXP, olen));
|
||||||
for (size_t i = 0; i < olen; ++i) {
|
for (size_t i = 0; i < olen; ++i) {
|
||||||
|
|||||||
@ -35,6 +35,54 @@ test_that("train and predict binary classification", {
|
|||||||
expect_lt(abs(err_pred1 - err_log), 10e-6)
|
expect_lt(abs(err_pred1 - err_log), 10e-6)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
test_that("dart prediction works", {
|
||||||
|
nrounds = 32
|
||||||
|
set.seed(1994)
|
||||||
|
|
||||||
|
d <- cbind(
|
||||||
|
x1 = rnorm(100),
|
||||||
|
x2 = rnorm(100),
|
||||||
|
x3 = rnorm(100))
|
||||||
|
y <- d[,"x1"] + d[,"x2"]^2 +
|
||||||
|
ifelse(d[,"x3"] > .5, d[,"x3"]^2, 2^d[,"x3"]) +
|
||||||
|
rnorm(100)
|
||||||
|
|
||||||
|
set.seed(1994)
|
||||||
|
booster_by_xgboost <- xgboost(data = d, label = y, max_depth = 2, booster = "dart",
|
||||||
|
rate_drop = 0.5, one_drop = TRUE,
|
||||||
|
eta = 1, nthread = 2, nrounds = nrounds, objective = "reg:squarederror")
|
||||||
|
pred_by_xgboost_0 <- predict(booster_by_xgboost, newdata = d, ntreelimit = 0)
|
||||||
|
pred_by_xgboost_1 <- predict(booster_by_xgboost, newdata = d, ntreelimit = nrounds)
|
||||||
|
expect_true(all(matrix(pred_by_xgboost_0, byrow=TRUE) == matrix(pred_by_xgboost_1, byrow=TRUE)))
|
||||||
|
|
||||||
|
pred_by_xgboost_2 <- predict(booster_by_xgboost, newdata = d, training = TRUE)
|
||||||
|
expect_false(all(matrix(pred_by_xgboost_0, byrow=TRUE) == matrix(pred_by_xgboost_2, byrow=TRUE)))
|
||||||
|
|
||||||
|
set.seed(1994)
|
||||||
|
dtrain <- xgb.DMatrix(data=d, info = list(label=y))
|
||||||
|
booster_by_train <- xgb.train( params = list(
|
||||||
|
booster = "dart",
|
||||||
|
max_depth = 2,
|
||||||
|
eta = 1,
|
||||||
|
rate_drop = 0.5,
|
||||||
|
one_drop = TRUE,
|
||||||
|
nthread = 1,
|
||||||
|
tree_method= "exact",
|
||||||
|
verbosity = 3,
|
||||||
|
objective = "reg:squarederror"
|
||||||
|
),
|
||||||
|
data = dtrain,
|
||||||
|
nrounds = nrounds
|
||||||
|
)
|
||||||
|
pred_by_train_0 <- predict(booster_by_train, newdata = dtrain, ntreelimit = 0)
|
||||||
|
pred_by_train_1 <- predict(booster_by_train, newdata = dtrain, ntreelimit = nrounds)
|
||||||
|
pred_by_train_2 <- predict(booster_by_train, newdata = dtrain, training = TRUE)
|
||||||
|
|
||||||
|
expect_true(all(matrix(pred_by_train_0, byrow=TRUE) == matrix(pred_by_xgboost_0, byrow=TRUE)))
|
||||||
|
expect_true(all(matrix(pred_by_train_1, byrow=TRUE) == matrix(pred_by_xgboost_1, byrow=TRUE)))
|
||||||
|
expect_true(all(matrix(pred_by_train_2, byrow=TRUE) == matrix(pred_by_xgboost_2, byrow=TRUE)))
|
||||||
|
})
|
||||||
|
|
||||||
test_that("train and predict softprob", {
|
test_that("train and predict softprob", {
|
||||||
lb <- as.numeric(iris$Species) - 1
|
lb <- as.numeric(iris$Species) - 1
|
||||||
set.seed(11)
|
set.seed(11)
|
||||||
|
|||||||
@ -157,7 +157,7 @@ test_that("SHAPs sum to predictions, with or without DART", {
|
|||||||
params = c(
|
params = c(
|
||||||
list(
|
list(
|
||||||
booster = booster,
|
booster = booster,
|
||||||
objective = "reg:linear",
|
objective = "reg:squarederror",
|
||||||
eval_metric = "rmse"),
|
eval_metric = "rmse"),
|
||||||
if (booster == "dart")
|
if (booster == "dart")
|
||||||
list(rate_drop = .01, one_drop = T)),
|
list(rate_drop = .01, one_drop = T)),
|
||||||
|
|||||||
@ -435,9 +435,9 @@ class Dart : public GBTree {
|
|||||||
std::fill(out_preds.begin(), out_preds.end(),
|
std::fill(out_preds.begin(), out_preds.end(),
|
||||||
model_.learner_model_param_->base_score);
|
model_.learner_model_param_->base_score);
|
||||||
}
|
}
|
||||||
|
const int nthread = omp_get_max_threads();
|
||||||
PredLoopSpecalize(p_fmat, &out_preds, num_group, 0,
|
InitThreadTemp(nthread);
|
||||||
ntree_limit, training);
|
PredLoopSpecalize(p_fmat, &out_preds, num_group, 0, ntree_limit);
|
||||||
}
|
}
|
||||||
|
|
||||||
void PredictInstance(const SparsePage::Inst &inst,
|
void PredictInstance(const SparsePage::Inst &inst,
|
||||||
@ -489,11 +489,8 @@ class Dart : public GBTree {
|
|||||||
std::vector<bst_float>* out_preds,
|
std::vector<bst_float>* out_preds,
|
||||||
int num_group,
|
int num_group,
|
||||||
unsigned tree_begin,
|
unsigned tree_begin,
|
||||||
unsigned tree_end,
|
unsigned tree_end) {
|
||||||
bool training) {
|
|
||||||
const int nthread = omp_get_max_threads();
|
|
||||||
CHECK_EQ(num_group, model_.learner_model_param_->num_output_group);
|
CHECK_EQ(num_group, model_.learner_model_param_->num_output_group);
|
||||||
InitThreadTemp(nthread);
|
|
||||||
std::vector<bst_float>& preds = *out_preds;
|
std::vector<bst_float>& preds = *out_preds;
|
||||||
CHECK_EQ(model_.param.size_leaf_vector, 0)
|
CHECK_EQ(model_.param.size_leaf_vector, 0)
|
||||||
<< "size_leaf_vector is enforced to 0 so far";
|
<< "size_leaf_vector is enforced to 0 so far";
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user