diff --git a/doc/jvm/xgboost4j_spark_tutorial.rst b/doc/jvm/xgboost4j_spark_tutorial.rst index 1a22b4414..9e4129257 100644 --- a/doc/jvm/xgboost4j_spark_tutorial.rst +++ b/doc/jvm/xgboost4j_spark_tutorial.rst @@ -1,5 +1,5 @@ ####################################### -XGBoost4J-Spark Tutorial (version 0.8+) +XGBoost4J-Spark Tutorial (version 0.9+) ####################################### **XGBoost4J-Spark** is a project aiming to seamlessly integrate XGBoost and Apache Spark by fitting XGBoost to Apache Spark's MLLIB framework. With the integration, user can not only uses the high-performant algorithm implementation of XGBoost, but also leverages the powerful data processing engine of Spark for: @@ -139,7 +139,7 @@ we drop the column "class" and only keeps the feature columns and the transforme The ``fit`` and ``transform`` are two key operations in MLLIB. Basically, ``fit`` produces a "transformer", e.g. StringIndexer, and each transformer applies ``transform`` method on DataFrame to add new column(s) containing transformed features/labels or prediction results, etc. To understand more about ``fit`` and ``transform``, You can find more details in `here `_. -Similarly, we can use another transformer, `VectorAssembler `_, to assemble feature columns "sepal length", "sepal width", "petal length" and "petal width" as a vector. +Similarly, we can use another transformer, `VectorAssembler `_, to assemble feature columns "sepal length", "sepal width", "petal length" and "petal width" as a vector. .. code-block:: scala