alrite
This commit is contained in:
parent
129fee64f3
commit
5061d55725
@ -5,7 +5,6 @@ import numpy as np
|
|||||||
# add path of xgboost python module
|
# add path of xgboost python module
|
||||||
sys.path.append('../../wrapper/')
|
sys.path.append('../../wrapper/')
|
||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
from sklearn.ensemble import GradientBoostingClassifier
|
|
||||||
import time
|
import time
|
||||||
test_size = 550000
|
test_size = 550000
|
||||||
|
|
||||||
@ -38,29 +37,30 @@ param['objective'] = 'binary:logitraw'
|
|||||||
param['scale_pos_weight'] = sum_wneg/sum_wpos
|
param['scale_pos_weight'] = sum_wneg/sum_wpos
|
||||||
param['bst:eta'] = 0.1
|
param['bst:eta'] = 0.1
|
||||||
param['bst:max_depth'] = 6
|
param['bst:max_depth'] = 6
|
||||||
param['eval_metric'] = 'auc'
|
#param['eval_metric'] = 'auc'
|
||||||
param['silent'] = 1
|
param['silent'] = 1
|
||||||
|
param['updater'] = sys.argv[1]
|
||||||
param['nthread'] = 4
|
param['nthread'] = 4
|
||||||
|
|
||||||
plst = param.items()+[('eval_metric', 'ams@0.15')]
|
#plst = param.items()+[('eval_metric', 'ams@0.15')]
|
||||||
|
|
||||||
watchlist = [ (xgmat,'train') ]
|
watchlist = [ (xgmat,'train') ]
|
||||||
# boost 10 tres
|
# boost 10 tres
|
||||||
num_round = 10
|
num_round = 10
|
||||||
print ('loading data end, start to boost trees')
|
print ('loading data end, start to boost trees')
|
||||||
print ("training GBM from sklearn")
|
print ("training GBM from sklearn")
|
||||||
tmp = time.time()
|
#tmp = time.time()
|
||||||
gbm = GradientBoostingClassifier(n_estimators=num_round, max_depth=6, verbose=2)
|
#gbm = GradientBoostingClassifier(n_estimators=num_round, max_depth=6, verbose=2)
|
||||||
gbm.fit(data, label)
|
#gbm.fit(data, label)
|
||||||
print ("sklearn.GBM costs: %s seconds" % str(time.time() - tmp))
|
#print ("sklearn.GBM costs: %s seconds" % str(time.time() - tmp))
|
||||||
#raw_input()
|
#raw_input()
|
||||||
print ("training xgboost")
|
print ("training xgboost")
|
||||||
threads = [1, 2, 4, 16]
|
threads = [1, 2, 4, 16]
|
||||||
for i in threads:
|
for i in threads:
|
||||||
param['nthread'] = i
|
param['nthread'] = i
|
||||||
tmp = time.time()
|
tmp = time.time()
|
||||||
plst = param.items()+[('eval_metric', 'ams@0.15')]
|
#plst = param.items()+[('eval_metric', 'ams@0.15')]
|
||||||
bst = xgb.train( plst, xgmat, num_round, watchlist );
|
bst = xgb.train( param, xgmat, num_round, watchlist );
|
||||||
print ("XGBoost with %d thread costs: %s seconds" % (i, str(time.time() - tmp)))
|
print ("XGBoost with %d thread costs: %s seconds" % (i, str(time.time() - tmp)))
|
||||||
|
|
||||||
print ('finish training')
|
print ('finish training')
|
||||||
|
|||||||
@ -466,7 +466,7 @@ class QuantileHistMaker: public HistMaker<TStats> {
|
|||||||
if (a.size != 0) {
|
if (a.size != 0) {
|
||||||
bst_float cpt = a.data[a.size - 1].value;
|
bst_float cpt = a.data[a.size - 1].value;
|
||||||
// this must be bigger than last value in a scale
|
// this must be bigger than last value in a scale
|
||||||
bst_float last = cpt + fabs(cpt);
|
bst_float last = cpt + fabs(cpt) + rt_eps;
|
||||||
this->wspace.cut.push_back(last);
|
this->wspace.cut.push_back(last);
|
||||||
}
|
}
|
||||||
this->wspace.rptr.push_back(this->wspace.cut.size());
|
this->wspace.rptr.push_back(this->wspace.cut.size());
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user