Fix and cleanup for column matrix. (#7901)
* Fix missed type dispatching for dense columns with missing values. * Code cleanup to reduce special cases. * Reduce memory usage.
This commit is contained in:
parent
1496789561
commit
4fcfd9c96e
@ -125,15 +125,19 @@ class DenseColumnIter : public Column<BinIdxT> {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
/*! \brief a collection of columns, with support for construction from
|
/**
|
||||||
GHistIndexMatrix. */
|
* \brief Column major matrix for gradient index. This matrix contains both dense column
|
||||||
|
* and sparse column, the type of the column is controlled by sparse threshold. When the
|
||||||
|
* number of missing values in a column is below the threshold it classified as dense
|
||||||
|
* column.
|
||||||
|
*/
|
||||||
class ColumnMatrix {
|
class ColumnMatrix {
|
||||||
public:
|
public:
|
||||||
// get number of features
|
// get number of features
|
||||||
bst_feature_t GetNumFeature() const { return static_cast<bst_feature_t>(type_.size()); }
|
bst_feature_t GetNumFeature() const { return static_cast<bst_feature_t>(type_.size()); }
|
||||||
|
|
||||||
// construct column matrix from GHistIndexMatrix
|
// construct column matrix from GHistIndexMatrix
|
||||||
inline void Init(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
|
void Init(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
|
||||||
int32_t n_threads) {
|
int32_t n_threads) {
|
||||||
auto const nfeature = static_cast<bst_feature_t>(gmat.cut.Ptrs().size() - 1);
|
auto const nfeature = static_cast<bst_feature_t>(gmat.cut.Ptrs().size() - 1);
|
||||||
const size_t nrow = gmat.row_ptr.size() - 1;
|
const size_t nrow = gmat.row_ptr.size() - 1;
|
||||||
@ -145,13 +149,14 @@ class ColumnMatrix {
|
|||||||
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
||||||
CHECK_LE(gmat.cut.Ptrs()[fid + 1] - gmat.cut.Ptrs()[fid], max_val);
|
CHECK_LE(gmat.cut.Ptrs()[fid + 1] - gmat.cut.Ptrs()[fid], max_val);
|
||||||
}
|
}
|
||||||
bool all_dense = gmat.IsDense();
|
|
||||||
|
bool all_dense_column = true;
|
||||||
gmat.GetFeatureCounts(&feature_counts_[0]);
|
gmat.GetFeatureCounts(&feature_counts_[0]);
|
||||||
// classify features
|
// classify features
|
||||||
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
||||||
if (static_cast<double>(feature_counts_[fid]) < sparse_threshold * nrow) {
|
if (static_cast<double>(feature_counts_[fid]) < sparse_threshold * nrow) {
|
||||||
type_[fid] = kSparseColumn;
|
type_[fid] = kSparseColumn;
|
||||||
all_dense = false;
|
all_dense_column = false;
|
||||||
} else {
|
} else {
|
||||||
type_[fid] = kDenseColumn;
|
type_[fid] = kDenseColumn;
|
||||||
}
|
}
|
||||||
@ -160,70 +165,51 @@ class ColumnMatrix {
|
|||||||
// want to compute storage boundary for each feature
|
// want to compute storage boundary for each feature
|
||||||
// using variants of prefix sum scan
|
// using variants of prefix sum scan
|
||||||
feature_offsets_.resize(nfeature + 1);
|
feature_offsets_.resize(nfeature + 1);
|
||||||
size_t accum_index_ = 0;
|
size_t accum_index = 0;
|
||||||
feature_offsets_[0] = accum_index_;
|
feature_offsets_[0] = accum_index;
|
||||||
for (bst_feature_t fid = 1; fid < nfeature + 1; ++fid) {
|
for (bst_feature_t fid = 1; fid < nfeature + 1; ++fid) {
|
||||||
if (type_[fid - 1] == kDenseColumn) {
|
if (type_[fid - 1] == kDenseColumn) {
|
||||||
accum_index_ += static_cast<size_t>(nrow);
|
accum_index += static_cast<size_t>(nrow);
|
||||||
} else {
|
} else {
|
||||||
accum_index_ += feature_counts_[fid - 1];
|
accum_index += feature_counts_[fid - 1];
|
||||||
}
|
}
|
||||||
feature_offsets_[fid] = accum_index_;
|
feature_offsets_[fid] = accum_index;
|
||||||
}
|
}
|
||||||
|
|
||||||
SetTypeSize(gmat.max_num_bins);
|
SetTypeSize(gmat.max_num_bins);
|
||||||
|
auto storage_size =
|
||||||
index_.resize(feature_offsets_[nfeature] * bins_type_size_, 0);
|
feature_offsets_.back() * static_cast<std::underlying_type_t<BinTypeSize>>(bins_type_size_);
|
||||||
if (!all_dense) {
|
index_.resize(storage_size, 0);
|
||||||
|
if (!all_dense_column) {
|
||||||
row_ind_.resize(feature_offsets_[nfeature]);
|
row_ind_.resize(feature_offsets_[nfeature]);
|
||||||
}
|
}
|
||||||
|
|
||||||
// store least bin id for each feature
|
// store least bin id for each feature
|
||||||
index_base_ = const_cast<uint32_t*>(gmat.cut.Ptrs().data());
|
index_base_ = const_cast<uint32_t*>(gmat.cut.Ptrs().data());
|
||||||
|
|
||||||
const bool noMissingValues = NoMissingValues(gmat.row_ptr[nrow], nrow, nfeature);
|
any_missing_ = !gmat.IsDense();
|
||||||
any_missing_ = !noMissingValues;
|
|
||||||
|
|
||||||
missing_flags_.clear();
|
missing_flags_.clear();
|
||||||
if (noMissingValues) {
|
// pre-fill index_ for dense columns
|
||||||
|
BinTypeSize gmat_bin_size = gmat.index.GetBinTypeSize();
|
||||||
|
if (!any_missing_) {
|
||||||
missing_flags_.resize(feature_offsets_[nfeature], false);
|
missing_flags_.resize(feature_offsets_[nfeature], false);
|
||||||
|
// row index is compressed, we need to dispatch it.
|
||||||
|
DispatchBinType(gmat_bin_size, [&, nrow, nfeature, n_threads](auto t) {
|
||||||
|
using RowBinIdxT = decltype(t);
|
||||||
|
SetIndexNoMissing(page, gmat.index.data<RowBinIdxT>(), nrow, nfeature, n_threads);
|
||||||
|
});
|
||||||
} else {
|
} else {
|
||||||
missing_flags_.resize(feature_offsets_[nfeature], true);
|
missing_flags_.resize(feature_offsets_[nfeature], true);
|
||||||
}
|
SetIndexMixedColumns(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
||||||
|
|
||||||
// pre-fill index_ for dense columns
|
|
||||||
if (all_dense) {
|
|
||||||
BinTypeSize gmat_bin_size = gmat.index.GetBinTypeSize();
|
|
||||||
if (gmat_bin_size == kUint8BinsTypeSize) {
|
|
||||||
SetIndexAllDense(page, gmat.index.data<uint8_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
||||||
n_threads);
|
|
||||||
} else if (gmat_bin_size == kUint16BinsTypeSize) {
|
|
||||||
SetIndexAllDense(page, gmat.index.data<uint16_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
||||||
n_threads);
|
|
||||||
} else {
|
|
||||||
CHECK_EQ(gmat_bin_size, kUint32BinsTypeSize);
|
|
||||||
SetIndexAllDense(page, gmat.index.data<uint32_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
||||||
n_threads);
|
|
||||||
}
|
|
||||||
/* For sparse DMatrix gmat.index.getBinTypeSize() returns always kUint32BinsTypeSize
|
|
||||||
but for ColumnMatrix we still have a chance to reduce the memory consumption */
|
|
||||||
} else {
|
|
||||||
if (bins_type_size_ == kUint8BinsTypeSize) {
|
|
||||||
SetIndex<uint8_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
||||||
} else if (bins_type_size_ == kUint16BinsTypeSize) {
|
|
||||||
SetIndex<uint16_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
||||||
} else {
|
|
||||||
CHECK_EQ(bins_type_size_, kUint32BinsTypeSize);
|
|
||||||
SetIndex<uint32_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
|
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
|
||||||
void SetTypeSize(size_t max_num_bins) {
|
void SetTypeSize(size_t max_bin_per_feat) {
|
||||||
if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
|
if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
|
||||||
bins_type_size_ = kUint8BinsTypeSize;
|
bins_type_size_ = kUint8BinsTypeSize;
|
||||||
} else if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
|
} else if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
|
||||||
bins_type_size_ = kUint16BinsTypeSize;
|
bins_type_size_ = kUint16BinsTypeSize;
|
||||||
} else {
|
} else {
|
||||||
bins_type_size_ = kUint32BinsTypeSize;
|
bins_type_size_ = kUint32BinsTypeSize;
|
||||||
@ -252,98 +238,78 @@ class ColumnMatrix {
|
|||||||
bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_flags_, feature_offset});
|
bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_flags_, feature_offset});
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
// all columns are dense column and has no missing value
|
||||||
inline void SetIndexAllDense(SparsePage const& page, T const* index, const GHistIndexMatrix& gmat,
|
// FIXME(jiamingy): We don't need a column matrix if there's no missing value.
|
||||||
const size_t nrow, const size_t nfeature, const bool noMissingValues,
|
template <typename RowBinIdxT>
|
||||||
int32_t n_threads) {
|
void SetIndexNoMissing(SparsePage const& page, RowBinIdxT const* row_index,
|
||||||
T* local_index = reinterpret_cast<T*>(&index_[0]);
|
const size_t n_samples, const size_t n_features, int32_t n_threads) {
|
||||||
|
DispatchBinType(bins_type_size_, [&](auto t) {
|
||||||
/* missing values make sense only for column with type kDenseColumn,
|
using ColumnBinT = decltype(t);
|
||||||
and if no missing values were observed it could be handled much faster. */
|
auto column_index = Span<ColumnBinT>{reinterpret_cast<ColumnBinT*>(index_.data()),
|
||||||
if (noMissingValues) {
|
index_.size() / sizeof(ColumnBinT)};
|
||||||
ParallelFor(nrow, n_threads, [&](auto rid) {
|
ParallelFor(n_samples, n_threads, [&](auto rid) {
|
||||||
const size_t ibegin = rid * nfeature;
|
const size_t ibegin = rid * n_features;
|
||||||
const size_t iend = (rid + 1) * nfeature;
|
const size_t iend = (rid + 1) * n_features;
|
||||||
size_t j = 0;
|
size_t j = 0;
|
||||||
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
||||||
const size_t idx = feature_offsets_[j];
|
const size_t idx = feature_offsets_[j];
|
||||||
local_index[idx + rid] = index[i];
|
// No need to add offset, as row index is compressed and stores the local index
|
||||||
|
column_index[idx + rid] = row_index[i];
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
} else {
|
});
|
||||||
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Set column index for both dense and sparse columns
|
||||||
|
*/
|
||||||
|
void SetIndexMixedColumns(SparsePage const& page, uint32_t const* row_index,
|
||||||
|
const GHistIndexMatrix& gmat, size_t n_features) {
|
||||||
|
std::vector<size_t> num_nonzeros;
|
||||||
|
num_nonzeros.resize(n_features, 0);
|
||||||
|
|
||||||
|
DispatchBinType(bins_type_size_, [&](auto t) {
|
||||||
|
using ColumnBinT = decltype(t);
|
||||||
|
ColumnBinT* local_index = reinterpret_cast<ColumnBinT*>(index_.data());
|
||||||
|
|
||||||
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
|
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
|
||||||
// T* begin = &local_index[feature_offsets_[fid]];
|
if (type_[fid] == kDenseColumn) {
|
||||||
const size_t idx = feature_offsets_[fid];
|
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
|
||||||
/* rbegin allows to store indexes from specific SparsePage batch */
|
begin[rid] = bin_id - index_base_[fid];
|
||||||
local_index[idx + rid] = bin_id;
|
// not thread-safe with bool vector.
|
||||||
|
missing_flags_[feature_offsets_[fid] + rid] = false;
|
||||||
missing_flags_[idx + rid] = false;
|
} else {
|
||||||
|
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
|
||||||
|
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
|
||||||
|
row_ind_[feature_offsets_[fid] + num_nonzeros[fid]] = rid;
|
||||||
|
++num_nonzeros[fid];
|
||||||
|
}
|
||||||
};
|
};
|
||||||
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// FIXME(jiamingy): In the future we might want to simply use binary search to simplify
|
const xgboost::Entry* data_ptr = page.data.HostVector().data();
|
||||||
// this and remove the dependency on SparsePage. This way we can have quantilized
|
const std::vector<bst_row_t>& offset_vec = page.offset.HostVector();
|
||||||
// matrix for host similar to `DeviceQuantileDMatrix`.
|
|
||||||
template <typename T, typename BinFn>
|
|
||||||
void SetIndexSparse(SparsePage const& batch, T* index, const GHistIndexMatrix& gmat,
|
|
||||||
const size_t nfeature, BinFn&& assign_bin) {
|
|
||||||
std::vector<size_t> num_nonzeros(nfeature, 0ul);
|
|
||||||
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
|
|
||||||
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
|
|
||||||
auto rbegin = 0;
|
|
||||||
const size_t batch_size = gmat.Size();
|
const size_t batch_size = gmat.Size();
|
||||||
CHECK_LT(batch_size, offset_vec.size());
|
CHECK_LT(batch_size, offset_vec.size());
|
||||||
|
|
||||||
for (size_t rid = 0; rid < batch_size; ++rid) {
|
for (size_t rid = 0; rid < batch_size; ++rid) {
|
||||||
const size_t ibegin = gmat.row_ptr[rbegin + rid];
|
const size_t ibegin = gmat.row_ptr[rid];
|
||||||
const size_t iend = gmat.row_ptr[rbegin + rid + 1];
|
const size_t iend = gmat.row_ptr[rid + 1];
|
||||||
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
|
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
|
||||||
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
|
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
|
||||||
|
|
||||||
CHECK_EQ(ibegin + inst.size(), iend);
|
CHECK_EQ(ibegin + inst.size(), iend);
|
||||||
size_t j = 0;
|
size_t j = 0;
|
||||||
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
||||||
const uint32_t bin_id = index[i];
|
const uint32_t bin_id = row_index[i];
|
||||||
auto fid = inst[j].index;
|
auto fid = inst[j].index;
|
||||||
assign_bin(bin_id, rid, fid);
|
get_bin_idx(bin_id, rid, fid);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
});
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline void SetIndex(SparsePage const& page, uint32_t const* index, const GHistIndexMatrix& gmat,
|
|
||||||
const size_t nfeature) {
|
|
||||||
T* local_index = reinterpret_cast<T*>(&index_[0]);
|
|
||||||
std::vector<size_t> num_nonzeros;
|
|
||||||
num_nonzeros.resize(nfeature);
|
|
||||||
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
|
|
||||||
|
|
||||||
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
|
|
||||||
if (type_[fid] == kDenseColumn) {
|
|
||||||
T* begin = &local_index[feature_offsets_[fid]];
|
|
||||||
begin[rid] = bin_id - index_base_[fid];
|
|
||||||
missing_flags_[feature_offsets_[fid] + rid] = false;
|
|
||||||
} else {
|
|
||||||
T* begin = &local_index[feature_offsets_[fid]];
|
|
||||||
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
|
|
||||||
row_ind_[feature_offsets_[fid] + num_nonzeros[fid]] = rid;
|
|
||||||
++num_nonzeros[fid];
|
|
||||||
}
|
|
||||||
};
|
|
||||||
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
BinTypeSize GetTypeSize() const { return bins_type_size_; }
|
BinTypeSize GetTypeSize() const { return bins_type_size_; }
|
||||||
auto GetColumnType(bst_feature_t fidx) const { return type_[fidx]; }
|
auto GetColumnType(bst_feature_t fidx) const { return type_[fidx]; }
|
||||||
|
|
||||||
// This is just an utility function
|
|
||||||
bool NoMissingValues(const size_t n_elements, const size_t n_row, const size_t n_features) {
|
|
||||||
return n_elements == n_features * n_row;
|
|
||||||
}
|
|
||||||
|
|
||||||
// And this returns part of state
|
// And this returns part of state
|
||||||
bool AnyMissing() const { return any_missing_; }
|
bool AnyMissing() const { return any_missing_; }
|
||||||
|
|
||||||
|
|||||||
@ -113,7 +113,7 @@ class HistogramCuts {
|
|||||||
auto end = ptrs[column_id + 1];
|
auto end = ptrs[column_id + 1];
|
||||||
auto beg = ptrs[column_id];
|
auto beg = ptrs[column_id];
|
||||||
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
|
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
|
||||||
bst_bin_t idx = it - values.cbegin();
|
auto idx = it - values.cbegin();
|
||||||
idx -= !!(idx == end);
|
idx -= !!(idx == end);
|
||||||
return idx;
|
return idx;
|
||||||
}
|
}
|
||||||
@ -189,12 +189,30 @@ inline HistogramCuts SketchOnDMatrix(DMatrix* m, int32_t max_bins, int32_t n_thr
|
|||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
enum BinTypeSize : uint32_t {
|
enum BinTypeSize : uint8_t {
|
||||||
kUint8BinsTypeSize = 1,
|
kUint8BinsTypeSize = 1,
|
||||||
kUint16BinsTypeSize = 2,
|
kUint16BinsTypeSize = 2,
|
||||||
kUint32BinsTypeSize = 4
|
kUint32BinsTypeSize = 4
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Dispatch for bin type, fn is a function that accepts a scalar of the bin type.
|
||||||
|
*/
|
||||||
|
template <typename Fn>
|
||||||
|
auto DispatchBinType(BinTypeSize type, Fn&& fn) {
|
||||||
|
switch (type) {
|
||||||
|
case kUint8BinsTypeSize: {
|
||||||
|
return fn(uint8_t{});
|
||||||
|
}
|
||||||
|
case kUint16BinsTypeSize: {
|
||||||
|
return fn(uint16_t{});
|
||||||
|
}
|
||||||
|
case kUint32BinsTypeSize: {
|
||||||
|
return fn(uint32_t{});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Optionally compressed gradient index. The compression works only with dense
|
* \brief Optionally compressed gradient index. The compression works only with dense
|
||||||
* data.
|
* data.
|
||||||
|
|||||||
@ -108,7 +108,7 @@ class PartitionBuilder {
|
|||||||
|
|
||||||
template <typename BinIdxType, bool any_missing, bool any_cat>
|
template <typename BinIdxType, bool any_missing, bool any_cat>
|
||||||
void Partition(const size_t node_in_set, const size_t nid, const common::Range1d range,
|
void Partition(const size_t node_in_set, const size_t nid, const common::Range1d range,
|
||||||
const int32_t split_cond, GHistIndexMatrix const& gmat,
|
const bst_bin_t split_cond, GHistIndexMatrix const& gmat,
|
||||||
const ColumnMatrix& column_matrix, const RegTree& tree, const size_t* rid) {
|
const ColumnMatrix& column_matrix, const RegTree& tree, const size_t* rid) {
|
||||||
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
|
||||||
common::Span<size_t> left = GetLeftBuffer(node_in_set, range.begin(), range.end());
|
common::Span<size_t> left = GetLeftBuffer(node_in_set, range.begin(), range.end());
|
||||||
|
|||||||
@ -28,7 +28,7 @@ void EncodeTreeLeafHost(RegTree const& tree, std::vector<bst_node_t> const& posi
|
|||||||
sorted_pos[i] = position[ridx[i]];
|
sorted_pos[i] = position[ridx[i]];
|
||||||
}
|
}
|
||||||
// find the first non-sampled row
|
// find the first non-sampled row
|
||||||
auto begin_pos =
|
size_t begin_pos =
|
||||||
std::distance(sorted_pos.cbegin(), std::find_if(sorted_pos.cbegin(), sorted_pos.cend(),
|
std::distance(sorted_pos.cbegin(), std::find_if(sorted_pos.cbegin(), sorted_pos.cend(),
|
||||||
[](bst_node_t nidx) { return nidx >= 0; }));
|
[](bst_node_t nidx) { return nidx >= 0; }));
|
||||||
CHECK_LE(begin_pos, sorted_pos.size());
|
CHECK_LE(begin_pos, sorted_pos.size());
|
||||||
|
|||||||
@ -264,7 +264,7 @@ class GlobalApproxUpdater : public TreeUpdater {
|
|||||||
|
|
||||||
public:
|
public:
|
||||||
explicit GlobalApproxUpdater(GenericParameter const *ctx, ObjInfo task)
|
explicit GlobalApproxUpdater(GenericParameter const *ctx, ObjInfo task)
|
||||||
: task_{task}, TreeUpdater(ctx) {
|
: TreeUpdater(ctx), task_{task} {
|
||||||
monitor_.Init(__func__);
|
monitor_.Init(__func__);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -355,11 +355,11 @@ void HistRowPartitioner::FindSplitConditions(const std::vector<CPUExpandEntry> &
|
|||||||
const bst_float split_pt = tree[nid].SplitCond();
|
const bst_float split_pt = tree[nid].SplitCond();
|
||||||
const uint32_t lower_bound = gmat.cut.Ptrs()[fid];
|
const uint32_t lower_bound = gmat.cut.Ptrs()[fid];
|
||||||
const uint32_t upper_bound = gmat.cut.Ptrs()[fid + 1];
|
const uint32_t upper_bound = gmat.cut.Ptrs()[fid + 1];
|
||||||
int32_t split_cond = -1;
|
bst_bin_t split_cond = -1;
|
||||||
// convert floating-point split_pt into corresponding bin_id
|
// convert floating-point split_pt into corresponding bin_id
|
||||||
// split_cond = -1 indicates that split_pt is less than all known cut points
|
// split_cond = -1 indicates that split_pt is less than all known cut points
|
||||||
CHECK_LT(upper_bound, static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
|
CHECK_LT(upper_bound, static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
|
||||||
for (uint32_t bound = lower_bound; bound < upper_bound; ++bound) {
|
for (auto bound = lower_bound; bound < upper_bound; ++bound) {
|
||||||
if (split_pt == gmat.cut.Values()[bound]) {
|
if (split_pt == gmat.cut.Values()[bound]) {
|
||||||
split_cond = static_cast<int32_t>(bound);
|
split_cond = static_cast<int32_t>(bound);
|
||||||
}
|
}
|
||||||
|
|||||||
@ -324,7 +324,7 @@ class QuantileHistMaker: public TreeUpdater {
|
|||||||
std::unique_ptr<HistogramBuilder<CPUExpandEntry>> histogram_builder_;
|
std::unique_ptr<HistogramBuilder<CPUExpandEntry>> histogram_builder_;
|
||||||
ObjInfo task_;
|
ObjInfo task_;
|
||||||
// Context for number of threads
|
// Context for number of threads
|
||||||
GenericParameter const* ctx_;
|
Context const* ctx_;
|
||||||
|
|
||||||
std::unique_ptr<common::Monitor> monitor_;
|
std::unique_ptr<common::Monitor> monitor_;
|
||||||
};
|
};
|
||||||
|
|||||||
@ -15,6 +15,7 @@ TEST(DenseColumn, Test) {
|
|||||||
int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
|
int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
|
||||||
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
|
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
|
||||||
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
|
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
|
||||||
|
BinTypeSize last{kUint8BinsTypeSize};
|
||||||
for (int32_t max_num_bin : max_num_bins) {
|
for (int32_t max_num_bin : max_num_bins) {
|
||||||
auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatrix();
|
auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatrix();
|
||||||
auto sparse_thresh = 0.2;
|
auto sparse_thresh = 0.2;
|
||||||
@ -24,7 +25,10 @@ TEST(DenseColumn, Test) {
|
|||||||
for (auto const& page : dmat->GetBatches<SparsePage>()) {
|
for (auto const& page : dmat->GetBatches<SparsePage>()) {
|
||||||
column_matrix.Init(page, gmat, sparse_thresh, common::OmpGetNumThreads(0));
|
column_matrix.Init(page, gmat, sparse_thresh, common::OmpGetNumThreads(0));
|
||||||
}
|
}
|
||||||
|
ASSERT_GE(column_matrix.GetTypeSize(), last);
|
||||||
|
ASSERT_LE(column_matrix.GetTypeSize(), kUint32BinsTypeSize);
|
||||||
|
last = column_matrix.GetTypeSize();
|
||||||
|
ASSERT_FALSE(column_matrix.AnyMissing());
|
||||||
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
|
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
|
||||||
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
|
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
@ -105,6 +109,7 @@ TEST(DenseColumnWithMissing, Test) {
|
|||||||
for (auto const& page : dmat->GetBatches<SparsePage>()) {
|
for (auto const& page : dmat->GetBatches<SparsePage>()) {
|
||||||
column_matrix.Init(page, gmat, 0.2, common::OmpGetNumThreads(0));
|
column_matrix.Init(page, gmat, 0.2, common::OmpGetNumThreads(0));
|
||||||
}
|
}
|
||||||
|
ASSERT_TRUE(column_matrix.AnyMissing());
|
||||||
switch (column_matrix.GetTypeSize()) {
|
switch (column_matrix.GetTypeSize()) {
|
||||||
case kUint8BinsTypeSize: {
|
case kUint8BinsTypeSize: {
|
||||||
auto col = column_matrix.DenseColumn<uint8_t, true>(0);
|
auto col = column_matrix.DenseColumn<uint8_t, true>(0);
|
||||||
|
|||||||
@ -130,7 +130,6 @@ TEST_F(TestPartitionBasedSplit, CPUHist) {
|
|||||||
namespace {
|
namespace {
|
||||||
auto CompareOneHotAndPartition(bool onehot) {
|
auto CompareOneHotAndPartition(bool onehot) {
|
||||||
int static constexpr kRows = 128, kCols = 1;
|
int static constexpr kRows = 128, kCols = 1;
|
||||||
using GradientSumT = double;
|
|
||||||
std::vector<FeatureType> ft(kCols, FeatureType::kCategorical);
|
std::vector<FeatureType> ft(kCols, FeatureType::kCategorical);
|
||||||
|
|
||||||
TrainParam param;
|
TrainParam param;
|
||||||
|
|||||||
@ -35,7 +35,7 @@ TEST(QuantileHist, Partitioner) {
|
|||||||
|
|
||||||
for (auto const& page : Xy->GetBatches<SparsePage>()) {
|
for (auto const& page : Xy->GetBatches<SparsePage>()) {
|
||||||
GHistIndexMatrix gmat;
|
GHistIndexMatrix gmat;
|
||||||
gmat.Init(page, {}, cuts, 64, false, 0.5, ctx.Threads());
|
gmat.Init(page, {}, cuts, 64, true, 0.5, ctx.Threads());
|
||||||
bst_feature_t const split_ind = 0;
|
bst_feature_t const split_ind = 0;
|
||||||
common::ColumnMatrix column_indices;
|
common::ColumnMatrix column_indices;
|
||||||
column_indices.Init(page, gmat, 0.5, ctx.Threads());
|
column_indices.Init(page, gmat, 0.5, ctx.Threads());
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user