[CI] Test building for 32-bit arch (#10021)

* [CI] Test building for 32-bit arch

* Update CMakeLists.txt

* Fix yaml

* Use Debian container

* Remove -Werror for 32-bit

* Revert "Remove -Werror for 32-bit"

This reverts commit c652bc6a037361bcceaf56fb01863210b462793d.

* Don't error for overloaded-virtual warning

* Ignore some warnings from dmlc-core

* Fix compiler warnings

* Fix formatting

* Apply suggestions from code review

Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>

* Add more cast

---------

Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
This commit is contained in:
Philip Hyunsu Cho 2024-01-31 13:20:51 -08:00 committed by GitHub
parent 234674a0a6
commit 4dfbe2a893
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 84 additions and 35 deletions

39
.github/workflows/i386.yml vendored Normal file
View File

@ -0,0 +1,39 @@
name: XGBoost-i386-test
on: [push, pull_request]
permissions:
contents: read # to fetch code (actions/checkout)
jobs:
build-32bit:
name: Build 32-bit
runs-on: ubuntu-latest
services:
registry:
image: registry:2
ports:
- 5000:5000
steps:
- uses: actions/checkout@v2.5.0
with:
submodules: 'true'
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver-opts: network=host
- name: Build and push container
uses: docker/build-push-action@v5
with:
context: .
file: tests/ci_build/Dockerfile.i386
push: true
tags: localhost:5000/xgboost/build-32bit:latest
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Build XGBoost
run: |
docker run --rm -v $PWD:/workspace -w /workspace \
-e CXXFLAGS='-Wno-error=overloaded-virtual -Wno-error=maybe-uninitialized -Wno-error=redundant-move' \
localhost:5000/xgboost/build-32bit:latest \
tests/ci_build/build_via_cmake.sh

View File

@ -39,9 +39,6 @@ elseif(CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
message(FATAL_ERROR "Need Clang 9.0 or newer to build XGBoost") message(FATAL_ERROR "Need Clang 9.0 or newer to build XGBoost")
endif() endif()
endif() endif()
if(CMAKE_SIZE_OF_VOID_P EQUAL 4)
message(FATAL_ERROR "XGBoost does not support 32-bit archs. Please use 64-bit arch instead.")
endif()
include(${xgboost_SOURCE_DIR}/cmake/PrefetchIntrinsics.cmake) include(${xgboost_SOURCE_DIR}/cmake/PrefetchIntrinsics.cmake)
find_prefetch_intrinsics() find_prefetch_intrinsics()

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2014-2023 by XGBoost Contributors * Copyright 2014-2024 by XGBoost Contributors
*/ */
#include "xgboost/c_api.h" #include "xgboost/c_api.h"
@ -991,8 +991,8 @@ XGB_DLL int XGBoosterBoostOneIter(BoosterHandle handle, DMatrixHandle dtrain, bs
auto *learner = static_cast<Learner *>(handle); auto *learner = static_cast<Learner *>(handle);
auto ctx = learner->Ctx()->MakeCPU(); auto ctx = learner->Ctx()->MakeCPU();
auto t_grad = linalg::MakeTensorView(&ctx, common::Span{grad, len}, len); auto t_grad = linalg::MakeTensorView(&ctx, common::Span{grad, static_cast<size_t>(len)}, len);
auto t_hess = linalg::MakeTensorView(&ctx, common::Span{hess, len}, len); auto t_hess = linalg::MakeTensorView(&ctx, common::Span{hess, static_cast<size_t>(len)}, len);
auto s_grad = linalg::ArrayInterfaceStr(t_grad); auto s_grad = linalg::ArrayInterfaceStr(t_grad);
auto s_hess = linalg::ArrayInterfaceStr(t_hess); auto s_hess = linalg::ArrayInterfaceStr(t_hess);

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2017-2023, XGBoost Contributors * Copyright 2017-2024, XGBoost Contributors
* \file column_matrix.h * \file column_matrix.h
* \brief Utility for fast column-wise access * \brief Utility for fast column-wise access
* \author Philip Cho * \author Philip Cho
@ -176,7 +176,7 @@ class ColumnMatrix {
void SetValid(typename LBitField32::index_type i) { missing.Clear(i); } void SetValid(typename LBitField32::index_type i) { missing.Clear(i); }
/** @brief assign the storage to the view. */ /** @brief assign the storage to the view. */
void InitView() { void InitView() {
missing = LBitField32{Span{storage.data(), storage.size()}}; missing = LBitField32{Span{storage.data(), static_cast<size_t>(storage.size())}};
} }
void GrowTo(std::size_t n_elements, bool init) { void GrowTo(std::size_t n_elements, bool init) {
@ -318,8 +318,8 @@ class ColumnMatrix {
common::Span<const BinIdxType> bin_index = { common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]), reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size}; column_size};
return std::move(DenseColumnIter<BinIdxType, any_missing>{ return DenseColumnIter<BinIdxType, any_missing>{
bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_.missing, feature_offset}); bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_.missing, feature_offset};
} }
// all columns are dense column and has no missing value // all columns are dense column and has no missing value
@ -332,7 +332,7 @@ class ColumnMatrix {
DispatchBinType(bins_type_size_, [&](auto t) { DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t); using ColumnBinT = decltype(t);
auto column_index = Span<ColumnBinT>{reinterpret_cast<ColumnBinT*>(index_.data()), auto column_index = Span<ColumnBinT>{reinterpret_cast<ColumnBinT*>(index_.data()),
index_.size() / sizeof(ColumnBinT)}; static_cast<size_t>(index_.size() / sizeof(ColumnBinT))};
ParallelFor(n_samples, n_threads, [&](auto rid) { ParallelFor(n_samples, n_threads, [&](auto rid) {
rid += base_rowid; rid += base_rowid;
const size_t ibegin = rid * n_features; const size_t ibegin = rid * n_features;

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2017-2023 by XGBoost Contributors * Copyright 2017-2024 by XGBoost Contributors
* \file hist_util.h * \file hist_util.h
* \brief Utility for fast histogram aggregation * \brief Utility for fast histogram aggregation
* \author Philip Cho, Tianqi Chen * \author Philip Cho, Tianqi Chen
@ -113,8 +113,8 @@ class HistogramCuts {
auto end = ptrs[column_id + 1]; auto end = ptrs[column_id + 1];
auto beg = ptrs[column_id]; auto beg = ptrs[column_id];
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value); auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
auto idx = it - values.cbegin(); auto idx = static_cast<bst_bin_t>(it - values.cbegin());
idx -= !!(idx == end); idx -= !!(idx == static_cast<bst_bin_t>(end));
return idx; return idx;
} }
@ -136,8 +136,8 @@ class HistogramCuts {
auto beg = ptrs[fidx] + vals.cbegin(); auto beg = ptrs[fidx] + vals.cbegin();
// Truncates the value in case it's not perfectly rounded. // Truncates the value in case it's not perfectly rounded.
auto v = static_cast<float>(common::AsCat(value)); auto v = static_cast<float>(common::AsCat(value));
auto bin_idx = std::lower_bound(beg, end, v) - vals.cbegin(); auto bin_idx = static_cast<bst_bin_t>(std::lower_bound(beg, end, v) - vals.cbegin());
if (bin_idx == ptrs.at(fidx + 1)) { if (bin_idx == static_cast<bst_bin_t>(ptrs.at(fidx + 1))) {
bin_idx -= 1; bin_idx -= 1;
} }
return bin_idx; return bin_idx;

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2023, XGBoost Contributors * Copyright 2023-2024, XGBoost Contributors
*/ */
#ifndef XGBOOST_COMMON_REF_RESOURCE_VIEW_H_ #ifndef XGBOOST_COMMON_REF_RESOURCE_VIEW_H_
#define XGBOOST_COMMON_REF_RESOURCE_VIEW_H_ #define XGBOOST_COMMON_REF_RESOURCE_VIEW_H_
@ -76,7 +76,7 @@ class RefResourceView {
[[nodiscard]] size_type size() const { return size_; } // NOLINT [[nodiscard]] size_type size() const { return size_; } // NOLINT
[[nodiscard]] size_type size_bytes() const { // NOLINT [[nodiscard]] size_type size_bytes() const { // NOLINT
return Span<const value_type>{data(), size()}.size_bytes(); return Span<const value_type>{data(), static_cast<size_t>(size())}.size_bytes();
} }
[[nodiscard]] value_type* data() { return ptr_; }; // NOLINT [[nodiscard]] value_type* data() { return ptr_; }; // NOLINT
[[nodiscard]] value_type const* data() const { return ptr_; }; // NOLINT [[nodiscard]] value_type const* data() const { return ptr_; }; // NOLINT

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2017-2023, XGBoost Contributors * Copyright 2017-2024, XGBoost Contributors
* \brief Data type for fast histogram aggregation. * \brief Data type for fast histogram aggregation.
*/ */
#include "gradient_index.h" #include "gradient_index.h"
@ -148,7 +148,8 @@ void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) {
new_vec = {new_ptr, n_bytes / sizeof(std::uint8_t), malloc_resource}; new_vec = {new_ptr, n_bytes / sizeof(std::uint8_t), malloc_resource};
} }
this->data = std::move(new_vec); this->data = std::move(new_vec);
this->index = common::Index{common::Span{data.data(), data.size()}, t_size}; this->index = common::Index{common::Span{data.data(), static_cast<size_t>(data.size())},
t_size};
}; };
if ((MaxNumBinPerFeat() - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && if ((MaxNumBinPerFeat() - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) &&

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2021-2023 XGBoost contributors * Copyright 2021-2024 XGBoost contributors
*/ */
#include <cstddef> // for size_t #include <cstddef> // for size_t
#include <cstdint> // for uint8_t #include <cstdint> // for uint8_t
@ -40,7 +40,9 @@ class GHistIndexRawFormat : public SparsePageFormat<GHistIndexMatrix> {
return false; return false;
} }
// - index // - index
page->index = common::Index{common::Span{page->data.data(), page->data.size()}, size_type}; page->index =
common::Index{common::Span{page->data.data(), static_cast<size_t>(page->data.size())},
size_type};
// hit count // hit count
if (!common::ReadVec(fi, &page->hit_count)) { if (!common::ReadVec(fi, &page->hit_count)) {

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2017-2023 by Contributors * Copyright 2017-2024 by Contributors
*/ */
#include "xgboost/predictor.h" #include "xgboost/predictor.h"
@ -46,7 +46,7 @@ void ValidateBaseMarginShape(linalg::Tensor<float, D> const& margin, bst_row_t n
void Predictor::InitOutPredictions(const MetaInfo& info, HostDeviceVector<bst_float>* out_preds, void Predictor::InitOutPredictions(const MetaInfo& info, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const { const gbm::GBTreeModel& model) const {
CHECK_NE(model.learner_model_param->num_output_group, 0); CHECK_NE(model.learner_model_param->num_output_group, 0);
std::size_t n{model.learner_model_param->OutputLength() * info.num_row_}; auto n = static_cast<size_t>(model.learner_model_param->OutputLength() * info.num_row_);
const HostDeviceVector<bst_float>* base_margin = info.base_margin_.Data(); const HostDeviceVector<bst_float>* base_margin = info.base_margin_.Data();
if (ctx_->Device().IsCUDA()) { if (ctx_->Device().IsCUDA()) {

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2023 by XGBoost Contributors * Copyright 2023-2024 by XGBoost Contributors
*/ */
#ifndef XGBOOST_TREE_HIST_HIST_CACHE_H_ #ifndef XGBOOST_TREE_HIST_HIST_CACHE_H_
#define XGBOOST_TREE_HIST_HIST_CACHE_H_ #define XGBOOST_TREE_HIST_HIST_CACHE_H_
@ -48,11 +48,13 @@ class BoundedHistCollection {
BoundedHistCollection() = default; BoundedHistCollection() = default;
common::GHistRow operator[](std::size_t idx) { common::GHistRow operator[](std::size_t idx) {
auto offset = node_map_.at(idx); auto offset = node_map_.at(idx);
return common::Span{data_->data(), data_->size()}.subspan(offset, n_total_bins_); return common::Span{data_->data(), static_cast<size_t>(data_->size())}.subspan(
offset, n_total_bins_);
} }
common::ConstGHistRow operator[](std::size_t idx) const { common::ConstGHistRow operator[](std::size_t idx) const {
auto offset = node_map_.at(idx); auto offset = node_map_.at(idx);
return common::Span{data_->data(), data_->size()}.subspan(offset, n_total_bins_); return common::Span{data_->data(), static_cast<size_t>(data_->size())}.subspan(
offset, n_total_bins_);
} }
void Reset(bst_bin_t n_total_bins, std::size_t n_cached_nodes) { void Reset(bst_bin_t n_total_bins, std::size_t n_cached_nodes) {
n_total_bins_ = n_total_bins; n_total_bins_ = n_total_bins;

View File

@ -0,0 +1,8 @@
FROM i386/debian:sid
ENV DEBIAN_FRONTEND noninteractive
SHELL ["/bin/bash", "-c"] # Use Bash as shell
RUN \
apt-get update && \
apt-get install -y tar unzip wget git build-essential ninja-build cmake

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2019-2023 XGBoost contributors * Copyright 2019-2024 XGBoost contributors
*/ */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <xgboost/c_api.h> #include <xgboost/c_api.h>
@ -212,8 +212,8 @@ TEST(CAPI, JsonModelIO) {
bst_ulong saved_len{0}; bst_ulong saved_len{0};
XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &saved_len, &saved); XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &saved_len, &saved);
ASSERT_EQ(len, saved_len); ASSERT_EQ(len, saved_len);
auto l = StringView{data, len}; auto l = StringView{data, static_cast<size_t>(len)};
auto r = StringView{saved, saved_len}; auto r = StringView{saved, static_cast<size_t>(saved_len)};
ASSERT_EQ(l.size(), r.size()); ASSERT_EQ(l.size(), r.size());
ASSERT_EQ(l, r); ASSERT_EQ(l, r);

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2016-2023 by XGBoost contributors * Copyright 2016-2024 by XGBoost contributors
*/ */
#include "helpers.h" #include "helpers.h"
@ -216,7 +216,7 @@ SimpleLCG::StateType SimpleLCG::Max() const { return max(); }
static_assert(SimpleLCG::max() - SimpleLCG::min()); static_assert(SimpleLCG::max() - SimpleLCG::min());
void RandomDataGenerator::GenerateLabels(std::shared_ptr<DMatrix> p_fmat) const { void RandomDataGenerator::GenerateLabels(std::shared_ptr<DMatrix> p_fmat) const {
RandomDataGenerator{p_fmat->Info().num_row_, this->n_targets_, 0.0f}.GenerateDense( RandomDataGenerator{static_cast<bst_row_t>(p_fmat->Info().num_row_), this->n_targets_, 0.0f}.GenerateDense(
p_fmat->Info().labels.Data()); p_fmat->Info().labels.Data());
CHECK_EQ(p_fmat->Info().labels.Size(), this->rows_ * this->n_targets_); CHECK_EQ(p_fmat->Info().labels.Size(), this->rows_ * this->n_targets_);
p_fmat->Info().labels.Reshape(this->rows_, this->n_targets_); p_fmat->Info().labels.Reshape(this->rows_, this->n_targets_);
@ -458,7 +458,7 @@ void RandomDataGenerator::GenerateCSR(
EXPECT_EQ(row_count, dmat->Info().num_row_); EXPECT_EQ(row_count, dmat->Info().num_row_);
if (with_label) { if (with_label) {
RandomDataGenerator{dmat->Info().num_row_, this->n_targets_, 0.0f}.GenerateDense( RandomDataGenerator{static_cast<bst_row_t>(dmat->Info().num_row_), this->n_targets_, 0.0f}.GenerateDense(
dmat->Info().labels.Data()); dmat->Info().labels.Data());
CHECK_EQ(dmat->Info().labels.Size(), this->rows_ * this->n_targets_); CHECK_EQ(dmat->Info().labels.Size(), this->rows_ * this->n_targets_);
dmat->Info().labels.Reshape(this->rows_, this->n_targets_); dmat->Info().labels.Reshape(this->rows_, this->n_targets_);

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2016-2023 by XGBoost contributors * Copyright 2016-2024 by XGBoost contributors
*/ */
#pragma once #pragma once
@ -238,7 +238,7 @@ class RandomDataGenerator {
bst_bin_t bins_{0}; bst_bin_t bins_{0};
std::vector<FeatureType> ft_; std::vector<FeatureType> ft_;
bst_cat_t max_cat_; bst_cat_t max_cat_{32};
Json ArrayInterfaceImpl(HostDeviceVector<float>* storage, size_t rows, size_t cols) const; Json ArrayInterfaceImpl(HostDeviceVector<float>* storage, size_t rows, size_t cols) const;