[BLOCKING] Handle empty rows in data iterators correctly (#5929)
* [jvm-packages] Handle empty rows in data iterators correctly * Fix clang-tidy error * last empty row * Add comments [skip ci] Co-authored-by: Nan Zhu <nanzhu@uber.com>
This commit is contained in:
parent
a4de2f68e4
commit
487ab0ce73
@ -171,4 +171,31 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
|
||||
val model = new XGBoostClassifier(paramMap).fit(inputDF)
|
||||
model.transform(inputDF).collect()
|
||||
}
|
||||
|
||||
// https://github.com/dmlc/xgboost/pull/5929
|
||||
test("handle the empty last row correctly with a missing value as 0") {
|
||||
val spark = ss
|
||||
import spark.implicits._
|
||||
// spark uses 1.5 * (nnz + 1.0) < size as the condition to decide whether using sparse or dense
|
||||
// vector,
|
||||
val testDF = Seq(
|
||||
(7.0f, 0.0f, -1.0f, 1.0f, 1.0),
|
||||
(1.0f, 0.0f, 1.0f, 1.0f, 1.0),
|
||||
(0.0f, 1.0f, 0.0f, 1.0f, 0.0),
|
||||
(1.0f, 0.0f, 1.0f, 1.0f, 1.0),
|
||||
(1.0f, -1.0f, 0.0f, 1.0f, 0.0),
|
||||
(0.0f, 0.0f, 0.0f, 1.0f, 1.0),
|
||||
(0.0f, 0.0f, 0.0f, 0.0f, 0.0)
|
||||
).toDF("col1", "col2", "col3", "col4", "label")
|
||||
val vectorAssembler = new VectorAssembler()
|
||||
.setInputCols(Array("col1", "col2", "col3", "col4"))
|
||||
.setOutputCol("features")
|
||||
val inputDF = vectorAssembler.transform(testDF).select("features", "label")
|
||||
inputDF.show()
|
||||
val paramMap = List("eta" -> "1", "max_depth" -> "2",
|
||||
"objective" -> "binary:logistic", "missing" -> 0.0f,
|
||||
"num_workers" -> 1, "allow_non_zero_for_missing" -> "true").toMap
|
||||
val model = new XGBoostClassifier(paramMap).fit(inputDF)
|
||||
model.transform(inputDF).collect()
|
||||
}
|
||||
}
|
||||
|
||||
@ -833,9 +833,9 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
uint64_t max_columns = 0;
|
||||
|
||||
// First-pass over the batch counting valid elements
|
||||
size_t num_lines = batch.Size();
|
||||
size_t batch_size = batch.Size();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (omp_ulong i = 0; i < static_cast<omp_ulong>(num_lines);
|
||||
for (omp_ulong i = 0; i < static_cast<omp_ulong>(batch_size);
|
||||
++i) { // NOLINT(*)
|
||||
int tid = omp_get_thread_num();
|
||||
auto line = batch.GetLine(i);
|
||||
@ -856,7 +856,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
|
||||
|
||||
// Second pass over batch, placing elements in correct position
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (omp_ulong i = 0; i < static_cast<omp_ulong>(num_lines);
|
||||
for (omp_ulong i = 0; i < static_cast<omp_ulong>(batch_size);
|
||||
++i) { // NOLINT(*)
|
||||
int tid = omp_get_thread_num();
|
||||
auto line = batch.GetLine(i);
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
*/
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
#include <type_traits>
|
||||
#include <algorithm>
|
||||
|
||||
#include "xgboost/data.h"
|
||||
@ -103,6 +104,8 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
auto& offset_vec = sparse_page_.offset.HostVector();
|
||||
auto& data_vec = sparse_page_.data.HostVector();
|
||||
uint64_t inferred_num_columns = 0;
|
||||
uint64_t total_batch_size = 0;
|
||||
// batch_size is either number of rows or cols, depending on data layout
|
||||
|
||||
adapter->BeforeFirst();
|
||||
// Iterate over batches of input data
|
||||
@ -110,6 +113,7 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
auto& batch = adapter->Value();
|
||||
auto batch_max_columns = sparse_page_.Push(batch, missing, nthread);
|
||||
inferred_num_columns = std::max(batch_max_columns, inferred_num_columns);
|
||||
total_batch_size += batch.Size();
|
||||
// Append meta information if available
|
||||
if (batch.Labels() != nullptr) {
|
||||
auto& labels = info_.labels_.HostVector();
|
||||
@ -153,16 +157,30 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
info_.num_col_ = adapter->NumColumns();
|
||||
}
|
||||
|
||||
|
||||
// Synchronise worker columns
|
||||
rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1);
|
||||
|
||||
if (adapter->NumRows() == kAdapterUnknownSize) {
|
||||
using IteratorAdapterT
|
||||
= IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>;
|
||||
// If AdapterT is either IteratorAdapter or FileAdapter type, use the total batch size to
|
||||
// determine the correct number of rows, as offset_vec may be too short
|
||||
if (std::is_same<AdapterT, IteratorAdapterT>::value
|
||||
|| std::is_same<AdapterT, FileAdapter>::value) {
|
||||
info_.num_row_ = total_batch_size;
|
||||
// Ensure offset_vec.size() - 1 == [number of rows]
|
||||
while (offset_vec.size() - 1 < total_batch_size) {
|
||||
offset_vec.emplace_back(offset_vec.back());
|
||||
}
|
||||
} else {
|
||||
CHECK((std::is_same<AdapterT, CSCAdapter>::value)) << "Expecting CSCAdapter";
|
||||
info_.num_row_ = offset_vec.size() - 1;
|
||||
}
|
||||
} else {
|
||||
if (offset_vec.empty()) {
|
||||
offset_vec.emplace_back(0);
|
||||
}
|
||||
|
||||
while (offset_vec.size() - 1 < adapter->NumRows()) {
|
||||
offset_vec.emplace_back(offset_vec.back());
|
||||
}
|
||||
|
||||
@ -28,6 +28,7 @@ TEST(Adapter, CSRAdapter) {
|
||||
auto line1 = batch.GetLine(1);
|
||||
EXPECT_EQ(line1.GetElement(0).value, 3);
|
||||
EXPECT_EQ(line1.GetElement(1).value, 4);
|
||||
|
||||
auto line2 = batch.GetLine(2);
|
||||
EXPECT_EQ(line2.GetElement(0).value, 5);
|
||||
EXPECT_EQ(line2.GetElement(0).row_idx, 2);
|
||||
@ -73,10 +74,11 @@ class CSRIterForTest {
|
||||
std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().index)>::type>
|
||||
feature_idx_ {0, 1, 0, 1, 1};
|
||||
std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().offset)>::type>
|
||||
row_ptr_ {0, 2, 4, 5};
|
||||
row_ptr_ {0, 2, 4, 5, 5};
|
||||
size_t iter_ {0};
|
||||
|
||||
public:
|
||||
size_t static constexpr kRows { 4 }; // Test for the last row being empty
|
||||
size_t static constexpr kCols { 13 }; // Test for having some missing columns
|
||||
|
||||
XGBoostBatchCSR Next() {
|
||||
@ -88,7 +90,7 @@ class CSRIterForTest {
|
||||
batch.offset = dmlc::BeginPtr(row_ptr_);
|
||||
batch.index = dmlc::BeginPtr(feature_idx_);
|
||||
batch.value = dmlc::BeginPtr(data_);
|
||||
batch.size = 3;
|
||||
batch.size = kRows;
|
||||
|
||||
batch.label = nullptr;
|
||||
batch.weight = nullptr;
|
||||
@ -117,16 +119,23 @@ int CSRSetDataNextForTest(DataIterHandle data_handle,
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Adapter, IteratorAdaper) {
|
||||
TEST(Adapter, IteratorAdapter) {
|
||||
CSRIterForTest iter;
|
||||
data::IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext,
|
||||
XGBoostBatchCSR> adapter{&iter, CSRSetDataNextForTest};
|
||||
constexpr size_t kRows { 6 };
|
||||
constexpr size_t kRows { 8 };
|
||||
|
||||
std::unique_ptr<DMatrix> data {
|
||||
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)
|
||||
};
|
||||
ASSERT_EQ(data->Info().num_col_, CSRIterForTest::kCols);
|
||||
ASSERT_EQ(data->Info().num_row_, kRows);
|
||||
int num_batch = 0;
|
||||
for (auto const& batch : data->GetBatches<SparsePage>()) {
|
||||
ASSERT_EQ(batch.offset.HostVector(), std::vector<bst_row_t>({0, 2, 4, 5, 5, 7, 9, 10, 10}));
|
||||
++num_batch;
|
||||
}
|
||||
ASSERT_EQ(num_batch, 1);
|
||||
}
|
||||
|
||||
} // namespace xgboost
|
||||
|
||||
@ -185,16 +185,22 @@ TEST(SimpleDMatrix, FromCSC) {
|
||||
TEST(SimpleDMatrix, FromFile) {
|
||||
std::string filename = "test.libsvm";
|
||||
CreateBigTestData(filename, 3 * 5);
|
||||
// Add an empty row at the end of the matrix
|
||||
{
|
||||
std::ofstream fo(filename, std::ios::app | std::ios::out);
|
||||
fo << "0\n";
|
||||
}
|
||||
constexpr size_t kExpectedNumRow = 6;
|
||||
std::unique_ptr<dmlc::Parser<uint32_t>> parser(
|
||||
dmlc::Parser<uint32_t>::Create(filename.c_str(), 0, 1, "auto"));
|
||||
|
||||
auto verify_batch = [](SparsePage const &batch) {
|
||||
EXPECT_EQ(batch.Size(), 5);
|
||||
auto verify_batch = [kExpectedNumRow](SparsePage const &batch) {
|
||||
EXPECT_EQ(batch.Size(), kExpectedNumRow);
|
||||
EXPECT_EQ(batch.offset.HostVector(),
|
||||
std::vector<bst_row_t>({0, 3, 6, 9, 12, 15}));
|
||||
std::vector<bst_row_t>({0, 3, 6, 9, 12, 15, 15}));
|
||||
EXPECT_EQ(batch.base_rowid, 0);
|
||||
|
||||
for (auto i = 0ull; i < batch.Size(); i++) {
|
||||
for (auto i = 0ull; i < batch.Size() - 1; i++) {
|
||||
if (i % 2 == 0) {
|
||||
EXPECT_EQ(batch[i][0].index, 0);
|
||||
EXPECT_EQ(batch[i][1].index, 1);
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user