[BLOCKING] Handle empty rows in data iterators correctly (#5929)

* [jvm-packages] Handle empty rows in data iterators correctly

* Fix clang-tidy error

* last empty row

* Add comments [skip ci]

Co-authored-by: Nan Zhu <nanzhu@uber.com>
This commit is contained in:
Philip Hyunsu Cho 2020-07-25 13:46:19 -07:00 committed by GitHub
parent a4de2f68e4
commit 487ab0ce73
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 79 additions and 19 deletions

View File

@ -171,4 +171,31 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
val model = new XGBoostClassifier(paramMap).fit(inputDF) val model = new XGBoostClassifier(paramMap).fit(inputDF)
model.transform(inputDF).collect() model.transform(inputDF).collect()
} }
// https://github.com/dmlc/xgboost/pull/5929
test("handle the empty last row correctly with a missing value as 0") {
val spark = ss
import spark.implicits._
// spark uses 1.5 * (nnz + 1.0) < size as the condition to decide whether using sparse or dense
// vector,
val testDF = Seq(
(7.0f, 0.0f, -1.0f, 1.0f, 1.0),
(1.0f, 0.0f, 1.0f, 1.0f, 1.0),
(0.0f, 1.0f, 0.0f, 1.0f, 0.0),
(1.0f, 0.0f, 1.0f, 1.0f, 1.0),
(1.0f, -1.0f, 0.0f, 1.0f, 0.0),
(0.0f, 0.0f, 0.0f, 1.0f, 1.0),
(0.0f, 0.0f, 0.0f, 0.0f, 0.0)
).toDF("col1", "col2", "col3", "col4", "label")
val vectorAssembler = new VectorAssembler()
.setInputCols(Array("col1", "col2", "col3", "col4"))
.setOutputCol("features")
val inputDF = vectorAssembler.transform(testDF).select("features", "label")
inputDF.show()
val paramMap = List("eta" -> "1", "max_depth" -> "2",
"objective" -> "binary:logistic", "missing" -> 0.0f,
"num_workers" -> 1, "allow_non_zero_for_missing" -> "true").toMap
val model = new XGBoostClassifier(paramMap).fit(inputDF)
model.transform(inputDF).collect()
}
} }

View File

@ -833,9 +833,9 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
uint64_t max_columns = 0; uint64_t max_columns = 0;
// First-pass over the batch counting valid elements // First-pass over the batch counting valid elements
size_t num_lines = batch.Size(); size_t batch_size = batch.Size();
#pragma omp parallel for schedule(static) #pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < static_cast<omp_ulong>(num_lines); for (omp_ulong i = 0; i < static_cast<omp_ulong>(batch_size);
++i) { // NOLINT(*) ++i) { // NOLINT(*)
int tid = omp_get_thread_num(); int tid = omp_get_thread_num();
auto line = batch.GetLine(i); auto line = batch.GetLine(i);
@ -847,7 +847,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
size_t key = element.row_idx - base_rowid; size_t key = element.row_idx - base_rowid;
// Adapter row index is absolute, here we want it relative to // Adapter row index is absolute, here we want it relative to
// current page // current page
CHECK_GE(key, builder_base_row_offset); CHECK_GE(key, builder_base_row_offset);
builder.AddBudget(key, tid); builder.AddBudget(key, tid);
} }
} }
@ -856,7 +856,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
// Second pass over batch, placing elements in correct position // Second pass over batch, placing elements in correct position
#pragma omp parallel for schedule(static) #pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < static_cast<omp_ulong>(num_lines); for (omp_ulong i = 0; i < static_cast<omp_ulong>(batch_size);
++i) { // NOLINT(*) ++i) { // NOLINT(*)
int tid = omp_get_thread_num(); int tid = omp_get_thread_num();
auto line = batch.GetLine(i); auto line = batch.GetLine(i);

View File

@ -6,6 +6,7 @@
*/ */
#include <vector> #include <vector>
#include <limits> #include <limits>
#include <type_traits>
#include <algorithm> #include <algorithm>
#include "xgboost/data.h" #include "xgboost/data.h"
@ -103,6 +104,8 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
auto& offset_vec = sparse_page_.offset.HostVector(); auto& offset_vec = sparse_page_.offset.HostVector();
auto& data_vec = sparse_page_.data.HostVector(); auto& data_vec = sparse_page_.data.HostVector();
uint64_t inferred_num_columns = 0; uint64_t inferred_num_columns = 0;
uint64_t total_batch_size = 0;
// batch_size is either number of rows or cols, depending on data layout
adapter->BeforeFirst(); adapter->BeforeFirst();
// Iterate over batches of input data // Iterate over batches of input data
@ -110,6 +113,7 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
auto& batch = adapter->Value(); auto& batch = adapter->Value();
auto batch_max_columns = sparse_page_.Push(batch, missing, nthread); auto batch_max_columns = sparse_page_.Push(batch, missing, nthread);
inferred_num_columns = std::max(batch_max_columns, inferred_num_columns); inferred_num_columns = std::max(batch_max_columns, inferred_num_columns);
total_batch_size += batch.Size();
// Append meta information if available // Append meta information if available
if (batch.Labels() != nullptr) { if (batch.Labels() != nullptr) {
auto& labels = info_.labels_.HostVector(); auto& labels = info_.labels_.HostVector();
@ -153,16 +157,30 @@ SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
info_.num_col_ = adapter->NumColumns(); info_.num_col_ = adapter->NumColumns();
} }
// Synchronise worker columns // Synchronise worker columns
rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1); rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1);
if (adapter->NumRows() == kAdapterUnknownSize) { if (adapter->NumRows() == kAdapterUnknownSize) {
info_.num_row_ = offset_vec.size() - 1; using IteratorAdapterT
= IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>;
// If AdapterT is either IteratorAdapter or FileAdapter type, use the total batch size to
// determine the correct number of rows, as offset_vec may be too short
if (std::is_same<AdapterT, IteratorAdapterT>::value
|| std::is_same<AdapterT, FileAdapter>::value) {
info_.num_row_ = total_batch_size;
// Ensure offset_vec.size() - 1 == [number of rows]
while (offset_vec.size() - 1 < total_batch_size) {
offset_vec.emplace_back(offset_vec.back());
}
} else {
CHECK((std::is_same<AdapterT, CSCAdapter>::value)) << "Expecting CSCAdapter";
info_.num_row_ = offset_vec.size() - 1;
}
} else { } else {
if (offset_vec.empty()) { if (offset_vec.empty()) {
offset_vec.emplace_back(0); offset_vec.emplace_back(0);
} }
while (offset_vec.size() - 1 < adapter->NumRows()) { while (offset_vec.size() - 1 < adapter->NumRows()) {
offset_vec.emplace_back(offset_vec.back()); offset_vec.emplace_back(offset_vec.back());
} }

View File

@ -26,12 +26,13 @@ TEST(Adapter, CSRAdapter) {
EXPECT_EQ(line0.GetElement(1).value, 2); EXPECT_EQ(line0.GetElement(1).value, 2);
auto line1 = batch.GetLine(1); auto line1 = batch.GetLine(1);
EXPECT_EQ(line1 .GetElement(0).value, 3); EXPECT_EQ(line1.GetElement(0).value, 3);
EXPECT_EQ(line1 .GetElement(1).value, 4); EXPECT_EQ(line1.GetElement(1).value, 4);
auto line2 = batch.GetLine(2); auto line2 = batch.GetLine(2);
EXPECT_EQ(line2 .GetElement(0).value, 5); EXPECT_EQ(line2.GetElement(0).value, 5);
EXPECT_EQ(line2 .GetElement(0).row_idx, 2); EXPECT_EQ(line2.GetElement(0).row_idx, 2);
EXPECT_EQ(line2 .GetElement(0).column_idx, 1); EXPECT_EQ(line2.GetElement(0).column_idx, 1);
} }
TEST(Adapter, CSCAdapterColsMoreThanRows) { TEST(Adapter, CSCAdapterColsMoreThanRows) {
@ -73,10 +74,11 @@ class CSRIterForTest {
std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().index)>::type> std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().index)>::type>
feature_idx_ {0, 1, 0, 1, 1}; feature_idx_ {0, 1, 0, 1, 1};
std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().offset)>::type> std::vector<std::remove_pointer<decltype(std::declval<XGBoostBatchCSR>().offset)>::type>
row_ptr_ {0, 2, 4, 5}; row_ptr_ {0, 2, 4, 5, 5};
size_t iter_ {0}; size_t iter_ {0};
public: public:
size_t static constexpr kRows { 4 }; // Test for the last row being empty
size_t static constexpr kCols { 13 }; // Test for having some missing columns size_t static constexpr kCols { 13 }; // Test for having some missing columns
XGBoostBatchCSR Next() { XGBoostBatchCSR Next() {
@ -88,7 +90,7 @@ class CSRIterForTest {
batch.offset = dmlc::BeginPtr(row_ptr_); batch.offset = dmlc::BeginPtr(row_ptr_);
batch.index = dmlc::BeginPtr(feature_idx_); batch.index = dmlc::BeginPtr(feature_idx_);
batch.value = dmlc::BeginPtr(data_); batch.value = dmlc::BeginPtr(data_);
batch.size = 3; batch.size = kRows;
batch.label = nullptr; batch.label = nullptr;
batch.weight = nullptr; batch.weight = nullptr;
@ -117,16 +119,23 @@ int CSRSetDataNextForTest(DataIterHandle data_handle,
} }
} }
TEST(Adapter, IteratorAdaper) { TEST(Adapter, IteratorAdapter) {
CSRIterForTest iter; CSRIterForTest iter;
data::IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, data::IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext,
XGBoostBatchCSR> adapter{&iter, CSRSetDataNextForTest}; XGBoostBatchCSR> adapter{&iter, CSRSetDataNextForTest};
constexpr size_t kRows { 6 }; constexpr size_t kRows { 8 };
std::unique_ptr<DMatrix> data { std::unique_ptr<DMatrix> data {
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1) DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)
}; };
ASSERT_EQ(data->Info().num_col_, CSRIterForTest::kCols); ASSERT_EQ(data->Info().num_col_, CSRIterForTest::kCols);
ASSERT_EQ(data->Info().num_row_, kRows); ASSERT_EQ(data->Info().num_row_, kRows);
int num_batch = 0;
for (auto const& batch : data->GetBatches<SparsePage>()) {
ASSERT_EQ(batch.offset.HostVector(), std::vector<bst_row_t>({0, 2, 4, 5, 5, 7, 9, 10, 10}));
++num_batch;
}
ASSERT_EQ(num_batch, 1);
} }
} // namespace xgboost } // namespace xgboost

View File

@ -185,16 +185,22 @@ TEST(SimpleDMatrix, FromCSC) {
TEST(SimpleDMatrix, FromFile) { TEST(SimpleDMatrix, FromFile) {
std::string filename = "test.libsvm"; std::string filename = "test.libsvm";
CreateBigTestData(filename, 3 * 5); CreateBigTestData(filename, 3 * 5);
// Add an empty row at the end of the matrix
{
std::ofstream fo(filename, std::ios::app | std::ios::out);
fo << "0\n";
}
constexpr size_t kExpectedNumRow = 6;
std::unique_ptr<dmlc::Parser<uint32_t>> parser( std::unique_ptr<dmlc::Parser<uint32_t>> parser(
dmlc::Parser<uint32_t>::Create(filename.c_str(), 0, 1, "auto")); dmlc::Parser<uint32_t>::Create(filename.c_str(), 0, 1, "auto"));
auto verify_batch = [](SparsePage const &batch) { auto verify_batch = [kExpectedNumRow](SparsePage const &batch) {
EXPECT_EQ(batch.Size(), 5); EXPECT_EQ(batch.Size(), kExpectedNumRow);
EXPECT_EQ(batch.offset.HostVector(), EXPECT_EQ(batch.offset.HostVector(),
std::vector<bst_row_t>({0, 3, 6, 9, 12, 15})); std::vector<bst_row_t>({0, 3, 6, 9, 12, 15, 15}));
EXPECT_EQ(batch.base_rowid, 0); EXPECT_EQ(batch.base_rowid, 0);
for (auto i = 0ull; i < batch.Size(); i++) { for (auto i = 0ull; i < batch.Size() - 1; i++) {
if (i % 2 == 0) { if (i % 2 == 0) {
EXPECT_EQ(batch[i][0].index, 0); EXPECT_EQ(batch[i][0].index, 0);
EXPECT_EQ(batch[i][1].index, 1); EXPECT_EQ(batch[i][1].index, 1);