Allow kwargs in dask predict (#6117)
This commit is contained in:
parent
b5f52f0b1b
commit
47350f6acb
@ -688,8 +688,8 @@ async def _direct_predict_impl(client, data, predict_fn):
|
||||
|
||||
|
||||
# pylint: disable=too-many-statements
|
||||
async def _predict_async(client: Client, model, data, *args,
|
||||
missing=numpy.nan):
|
||||
async def _predict_async(client: Client, model, data, missing=numpy.nan, **kwargs):
|
||||
|
||||
if isinstance(model, Booster):
|
||||
booster = model
|
||||
elif isinstance(model, dict):
|
||||
@ -704,7 +704,7 @@ async def _predict_async(client: Client, model, data, *args,
|
||||
worker = distributed_get_worker()
|
||||
booster.set_param({'nthread': worker.nthreads})
|
||||
m = DMatrix(partition, missing=missing, nthread=worker.nthreads)
|
||||
predt = booster.predict(m, *args, validate_features=False)
|
||||
predt = booster.predict(m, validate_features=False, **kwargs)
|
||||
if is_df:
|
||||
if lazy_isinstance(partition, 'cudf', 'core.dataframe.DataFrame'):
|
||||
import cudf # pylint: disable=import-error
|
||||
@ -737,7 +737,7 @@ async def _predict_async(client: Client, model, data, *args,
|
||||
missing=missing, nthread=worker.nthreads)
|
||||
predt = booster.predict(data=local_x,
|
||||
validate_features=local_x.num_row() != 0,
|
||||
*args)
|
||||
**kwargs)
|
||||
columns = 1 if len(predt.shape) == 1 else predt.shape[1]
|
||||
ret = ((delayed(predt), columns), order)
|
||||
predictions.append(ret)
|
||||
@ -784,7 +784,7 @@ async def _predict_async(client: Client, model, data, *args,
|
||||
return predictions
|
||||
|
||||
|
||||
def predict(client, model, data, *args, missing=numpy.nan):
|
||||
def predict(client, model, data, missing=numpy.nan, **kwargs):
|
||||
'''Run prediction with a trained booster.
|
||||
|
||||
.. note::
|
||||
@ -813,8 +813,8 @@ def predict(client, model, data, *args, missing=numpy.nan):
|
||||
'''
|
||||
_assert_dask_support()
|
||||
client = _xgb_get_client(client)
|
||||
return client.sync(_predict_async, client, model, data, *args,
|
||||
missing=missing)
|
||||
return client.sync(_predict_async, client, model, data,
|
||||
missing=missing, **kwargs)
|
||||
|
||||
|
||||
async def _inplace_predict_async(client, model, data,
|
||||
|
||||
@ -215,7 +215,7 @@ def test_dask_classifier():
|
||||
classifier = xgb.dask.DaskXGBClassifier(
|
||||
verbosity=1, n_estimators=2)
|
||||
classifier.client = client
|
||||
classifier.fit(X, y, eval_set=[(X, y)])
|
||||
classifier.fit(X, y, eval_set=[(X, y)])
|
||||
prediction = classifier.predict(X)
|
||||
|
||||
assert prediction.ndim == 1
|
||||
@ -276,7 +276,6 @@ def test_sklearn_grid_search():
|
||||
|
||||
|
||||
def run_empty_dmatrix_reg(client, parameters):
|
||||
|
||||
def _check_outputs(out, predictions):
|
||||
assert isinstance(out['booster'], xgb.dask.Booster)
|
||||
assert len(out['history']['validation']['rmse']) == 2
|
||||
@ -424,7 +423,7 @@ async def run_dask_classifier_asyncio(scheduler_address):
|
||||
classifier = await xgb.dask.DaskXGBClassifier(
|
||||
verbosity=1, n_estimators=2)
|
||||
classifier.client = client
|
||||
await classifier.fit(X, y, eval_set=[(X, y)])
|
||||
await classifier.fit(X, y, eval_set=[(X, y)])
|
||||
prediction = await classifier.predict(X)
|
||||
|
||||
assert prediction.ndim == 1
|
||||
@ -447,7 +446,6 @@ async def run_dask_classifier_asyncio(scheduler_address):
|
||||
assert probas.shape[0] == kRows
|
||||
assert probas.shape[1] == 10
|
||||
|
||||
|
||||
# Test with dataframe.
|
||||
X_d = dd.from_dask_array(X)
|
||||
y_d = dd.from_dask_array(y)
|
||||
@ -472,6 +470,28 @@ def test_with_asyncio():
|
||||
asyncio.run(run_dask_classifier_asyncio(address))
|
||||
|
||||
|
||||
def test_predict():
|
||||
with LocalCluster(n_workers=kWorkers) as cluster:
|
||||
with Client(cluster) as client:
|
||||
X, y = generate_array()
|
||||
dtrain = DaskDMatrix(client, X, y)
|
||||
booster = xgb.dask.train(
|
||||
client, {}, dtrain, num_boost_round=2)['booster']
|
||||
|
||||
pred = xgb.dask.predict(client, model=booster, data=dtrain)
|
||||
assert pred.ndim == 1
|
||||
assert pred.shape[0] == kRows
|
||||
|
||||
margin = xgb.dask.predict(client, model=booster, data=dtrain, output_margin=True)
|
||||
assert margin.ndim == 1
|
||||
assert margin.shape[0] == kRows
|
||||
|
||||
shap = xgb.dask.predict(client, model=booster, data=dtrain, pred_contribs=True)
|
||||
assert shap.ndim == 2
|
||||
assert shap.shape[0] == kRows
|
||||
assert shap.shape[1] == kCols + 1
|
||||
|
||||
|
||||
class TestWithDask:
|
||||
def run_updater_test(self, client, params, num_rounds, dataset,
|
||||
tree_method):
|
||||
@ -489,9 +509,9 @@ class TestWithDask:
|
||||
chunk = 128
|
||||
X = da.from_array(dataset.X,
|
||||
chunks=(chunk, dataset.X.shape[1]))
|
||||
y = da.from_array(dataset.y, chunks=(chunk, ))
|
||||
y = da.from_array(dataset.y, chunks=(chunk,))
|
||||
if dataset.w is not None:
|
||||
w = da.from_array(dataset.w, chunks=(chunk, ))
|
||||
w = da.from_array(dataset.w, chunks=(chunk,))
|
||||
else:
|
||||
w = None
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user