diff --git a/tests/python/test_models.py b/tests/python/test_models.py new file mode 100644 index 000000000..8c06d9de9 --- /dev/null +++ b/tests/python/test_models.py @@ -0,0 +1,39 @@ +import numpy as np +import xgboost as xgb + +dpath = 'demo/data/' +dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') +dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') + +def test_glm(): + param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1 } + watchlist = [(dtest,'eval'), (dtrain,'train')] + num_round = 4 + bst = xgb.train(param, dtrain, num_round, watchlist) + assert isinstance(bst, xgb.core.Booster) + preds = bst.predict(dtest) + labels = dtest.get_label() + err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) + assert err < 0.1 + +def test_custom_objective(): + param = {'max_depth':2, 'eta':1, 'silent':1 } + watchlist = [(dtest,'eval'), (dtrain,'train')] + num_round = 2 + def logregobj(preds, dtrain): + labels = dtrain.get_label() + preds = 1.0 / (1.0 + np.exp(-preds)) + grad = preds - labels + hess = preds * (1.0-preds) + return grad, hess + def evalerror(preds, dtrain): + labels = dtrain.get_label() + return 'error', float(sum(labels != (preds > 0.0))) / len(labels) + bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror) + assert isinstance(bst, xgb.core.Booster) + preds = bst.predict(dtest) + labels = dtest.get_label() + err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) + assert err < 0.1 + +