Add demo for using AFT survival with Dask (#6853)
This commit is contained in:
parent
878b990fcd
commit
4224c08cac
61
demo/dask/cpu_survival.py
Normal file
61
demo/dask/cpu_survival.py
Normal file
@ -0,0 +1,61 @@
|
||||
import xgboost as xgb
|
||||
import os
|
||||
from xgboost.dask import DaskDMatrix
|
||||
import dask.dataframe as dd
|
||||
from dask.distributed import Client
|
||||
from dask.distributed import LocalCluster
|
||||
|
||||
def main(client):
|
||||
# Load an example survival data from CSV into a Dask data frame.
|
||||
# The Veterans' Administration Lung Cancer Trial
|
||||
# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R (1980)
|
||||
CURRENT_DIR = os.path.dirname(__file__)
|
||||
df = dd.read_csv(os.path.join(CURRENT_DIR, os.pardir, 'data', 'veterans_lung_cancer.csv'))
|
||||
|
||||
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
|
||||
# DMatrix scatter around workers.
|
||||
# For AFT survival, you'd need to extract the lower and upper bounds for the label
|
||||
# and pass them as arguments to DaskDMatrix.
|
||||
y_lower_bound = df['Survival_label_lower_bound']
|
||||
y_upper_bound = df['Survival_label_upper_bound']
|
||||
X = df.drop(['Survival_label_lower_bound',
|
||||
'Survival_label_upper_bound'], axis=1)
|
||||
dtrain = DaskDMatrix(client, X, label_lower_bound=y_lower_bound,
|
||||
label_upper_bound=y_upper_bound)
|
||||
|
||||
# Use train method from xgboost.dask instead of xgboost. This
|
||||
# distributed version of train returns a dictionary containing the
|
||||
# resulting booster and evaluation history obtained from
|
||||
# evaluation metrics.
|
||||
params = {'verbosity': 1,
|
||||
'objective': 'survival:aft',
|
||||
'eval_metric': 'aft-nloglik',
|
||||
'learning_rate': 0.05,
|
||||
'aft_loss_distribution_scale': 1.20,
|
||||
'aft_loss_distribution': 'normal',
|
||||
'max_depth': 6,
|
||||
'lambda': 0.01,
|
||||
'alpha': 0.02}
|
||||
output = xgb.dask.train(client,
|
||||
params,
|
||||
dtrain,
|
||||
num_boost_round=100,
|
||||
evals=[(dtrain, 'train')])
|
||||
bst = output['booster']
|
||||
history = output['history']
|
||||
|
||||
# you can pass output directly into `predict` too.
|
||||
prediction = xgb.dask.predict(client, bst, dtrain)
|
||||
print('Evaluation history: ', history)
|
||||
|
||||
# Uncomment the following line to save the model to the disk
|
||||
# bst.save_model('survival_model.json')
|
||||
|
||||
return prediction
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# or use other clusters for scaling
|
||||
with LocalCluster(n_workers=7, threads_per_worker=4) as cluster:
|
||||
with Client(cluster) as client:
|
||||
main(client)
|
||||
Loading…
x
Reference in New Issue
Block a user