Add demo for using AFT survival with Dask (#6853)

This commit is contained in:
Philip Hyunsu Cho 2021-04-13 16:18:33 -07:00 committed by GitHub
parent 878b990fcd
commit 4224c08cac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

61
demo/dask/cpu_survival.py Normal file
View File

@ -0,0 +1,61 @@
import xgboost as xgb
import os
from xgboost.dask import DaskDMatrix
import dask.dataframe as dd
from dask.distributed import Client
from dask.distributed import LocalCluster
def main(client):
# Load an example survival data from CSV into a Dask data frame.
# The Veterans' Administration Lung Cancer Trial
# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R (1980)
CURRENT_DIR = os.path.dirname(__file__)
df = dd.read_csv(os.path.join(CURRENT_DIR, os.pardir, 'data', 'veterans_lung_cancer.csv'))
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
# DMatrix scatter around workers.
# For AFT survival, you'd need to extract the lower and upper bounds for the label
# and pass them as arguments to DaskDMatrix.
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound',
'Survival_label_upper_bound'], axis=1)
dtrain = DaskDMatrix(client, X, label_lower_bound=y_lower_bound,
label_upper_bound=y_upper_bound)
# Use train method from xgboost.dask instead of xgboost. This
# distributed version of train returns a dictionary containing the
# resulting booster and evaluation history obtained from
# evaluation metrics.
params = {'verbosity': 1,
'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'learning_rate': 0.05,
'aft_loss_distribution_scale': 1.20,
'aft_loss_distribution': 'normal',
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}
output = xgb.dask.train(client,
params,
dtrain,
num_boost_round=100,
evals=[(dtrain, 'train')])
bst = output['booster']
history = output['history']
# you can pass output directly into `predict` too.
prediction = xgb.dask.predict(client, bst, dtrain)
print('Evaluation history: ', history)
# Uncomment the following line to save the model to the disk
# bst.save_model('survival_model.json')
return prediction
if __name__ == '__main__':
# or use other clusters for scaling
with LocalCluster(n_workers=7, threads_per_worker=4) as cluster:
with Client(cluster) as client:
main(client)