Merge branch 'master' of ssh://github.com/tqchen/xgboost
This commit is contained in:
commit
41ea0bf97a
@ -437,14 +437,14 @@ def mknfold(dall, nfold, param, seed, evals=[], fpreproc = None):
|
|||||||
"""
|
"""
|
||||||
mk nfold list of cvpack from randidx
|
mk nfold list of cvpack from randidx
|
||||||
"""
|
"""
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
randidx = np.random.permutation(dall.num_rows())
|
randidx = np.random.permutation(dall.num_row())
|
||||||
kstep = len(randidx) / nfold
|
kstep = len(randidx) / nfold
|
||||||
idset = [randidx[ (i*kstep) : min(len(randidx),(i+1)*kstep) ] for i in range(nfold)]
|
idset = [randidx[ (i*kstep) : min(len(randidx),(i+1)*kstep) ] for i in range(nfold)]
|
||||||
ret = []
|
ret = []
|
||||||
for k in range(nfold):
|
for k in range(nfold):
|
||||||
dtrain = dall.slice(np.concatenate([idset[i] for i in range(nfold) if k != i]))
|
dtrain = dall.slice(np.concatenate([idset[i] for i in range(nfold) if k != i]))
|
||||||
dtest = all.slice(idxset[k])
|
dtest = dall.slice(idset[k])
|
||||||
# run preprocessing on the data set if needed
|
# run preprocessing on the data set if needed
|
||||||
if fpreproc is not None:
|
if fpreproc is not None:
|
||||||
dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy())
|
dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy())
|
||||||
@ -483,14 +483,14 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metric = [], \
|
|||||||
num of round to be boosted
|
num of round to be boosted
|
||||||
nfold: int
|
nfold: int
|
||||||
folds to do cv
|
folds to do cv
|
||||||
evals: list or
|
evals: list or
|
||||||
list of items to be evaluated
|
list of items to be evaluated
|
||||||
obj:
|
obj:
|
||||||
feval:
|
feval:
|
||||||
fpreproc: preprocessing function that takes dtrain, dtest,
|
fpreproc: preprocessing function that takes dtrain, dtest,
|
||||||
param and return transformed version of dtrain, dtest, param
|
param and return transformed version of dtrain, dtest, param
|
||||||
"""
|
"""
|
||||||
cvfolds = mknfold(dtrain, nfold, params, 0, eval_metrics, fpreproc)
|
cvfolds = mknfold(dtrain, nfold, params, 0, eval_metric, fpreproc)
|
||||||
for i in range(num_boost_round):
|
for i in range(num_boost_round):
|
||||||
for f in cvfolds:
|
for f in cvfolds:
|
||||||
f.update(i, obj)
|
f.update(i, obj)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user