diff --git a/doc/tutorials/custom_metric_obj.rst b/doc/tutorials/custom_metric_obj.rst index 51491e85c..08bf99b32 100644 --- a/doc/tutorials/custom_metric_obj.rst +++ b/doc/tutorials/custom_metric_obj.rst @@ -52,7 +52,7 @@ If we compute the gradient of said objective function: As well as the hessian (the second derivative of the objective): .. math:: - h = \frac{\partial^2{objective}}{\partial{pred}} = \frac{ - \log(pred + 1) + \log(label + 1) + 1}{(pred + 1)^2} + h = \frac{\partial^2{objective}}{\partial{pred}^2} = \frac{ - \log(pred + 1) + \log(label + 1) + 1}{(pred + 1)^2} ***************************** Customized Objective Function