python: unittest for early stopping of cv
This commit is contained in:
parent
282a64c252
commit
3d36fa8f4e
@ -2,31 +2,61 @@ import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.cross_validation import KFold, train_test_split
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import unittest
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
class TestEarlyStopping(unittest.TestCase):
|
||||
def test_early_stopping_nonparallel(self):
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
||||
clf1 = xgb.XGBClassifier()
|
||||
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
clf2 = xgb.XGBClassifier()
|
||||
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
# should be the same
|
||||
assert clf1.best_score == clf2.best_score
|
||||
assert clf1.best_score != 1
|
||||
# check overfit
|
||||
clf3 = xgb.XGBClassifier()
|
||||
clf3.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
assert clf3.best_score == 1
|
||||
|
||||
def test_early_stopping_nonparallel(self):
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
|
||||
clf1 = xgb.XGBClassifier()
|
||||
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
clf2 = xgb.XGBClassifier()
|
||||
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
# should be the same
|
||||
assert clf1.best_score == clf2.best_score
|
||||
assert clf1.best_score != 1
|
||||
# check overfit
|
||||
clf3 = xgb.XGBClassifier()
|
||||
clf3.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
|
||||
eval_set=[(X_test, y_test)])
|
||||
assert clf3.best_score == 1
|
||||
# TODO: parallel test for early stopping
|
||||
# TODO: comment out for now. Will re-visit later
|
||||
|
||||
# TODO: parallel test for early stopping
|
||||
# TODO: comment out for now. Will re-visit later
|
||||
def evalerror(self, preds, dtrain):
|
||||
labels = dtrain.get_label()
|
||||
return 'rmse', mean_squared_error(labels, preds)
|
||||
|
||||
def test_cv_early_stopping(self):
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
dm = xgb.DMatrix(X, label=y)
|
||||
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
|
||||
|
||||
import pandas as pd
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=10)
|
||||
assert cv.shape[0] == 10
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=5)
|
||||
assert cv.shape[0] == 3
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, early_stopping_rounds=1)
|
||||
assert cv.shape[0] == 1
|
||||
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, feval=self.evalerror,
|
||||
early_stopping_rounds=10)
|
||||
assert cv.shape[0] == 10
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, feval=self.evalerror,
|
||||
early_stopping_rounds=1)
|
||||
assert cv.shape[0] == 5
|
||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, feval=self.evalerror,
|
||||
maximize=True, early_stopping_rounds=1)
|
||||
assert cv.shape[0] == 1
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user