reformat benchmark_tree.py to get rid of lint errors (#4126)
This commit is contained in:
parent
9b917cda4f
commit
3be1b9ae30
@ -2,6 +2,8 @@
|
||||
|
||||
ignore=tests
|
||||
|
||||
extension-pkg-whitelist=numpy
|
||||
|
||||
disiable=unexpected-special-method-signature,too-many-nested-blocks
|
||||
|
||||
dummy-variables-rgx=(unused|)_.*
|
||||
@ -19,3 +21,6 @@ attr-naming-style=snake_case
|
||||
argument-naming-style=snake_case
|
||||
variable-naming-style=snake_case
|
||||
class-attribute-naming-style=snake_case
|
||||
|
||||
# Allow single-letter variables
|
||||
variable-rgx=[a-zA-Z_][a-z0-9_]{0,30}$
|
||||
|
||||
@ -1,65 +1,81 @@
|
||||
# pylint: skip-file
|
||||
import sys, argparse
|
||||
import xgboost as xgb
|
||||
"""Run benchmark on the tree booster."""
|
||||
|
||||
import argparse
|
||||
import ast
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_classification
|
||||
from sklearn.model_selection import train_test_split
|
||||
import time
|
||||
import ast
|
||||
import xgboost as xgb
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
RNG = np.random.RandomState(1994)
|
||||
|
||||
|
||||
def run_benchmark(args):
|
||||
|
||||
"""Runs the benchmark."""
|
||||
try:
|
||||
dtest = xgb.DMatrix('dtest.dm')
|
||||
dtrain = xgb.DMatrix('dtrain.dm')
|
||||
|
||||
if not (dtest.num_col() == args.columns \
|
||||
if not (dtest.num_col() == args.columns
|
||||
and dtrain.num_col() == args.columns):
|
||||
raise ValueError("Wrong cols")
|
||||
if not (dtest.num_row() == args.rows * args.test_size \
|
||||
and dtrain.num_row() == args.rows * (1-args.test_size)):
|
||||
if not (dtest.num_row() == args.rows * args.test_size
|
||||
and dtrain.num_row() == args.rows * (1 - args.test_size)):
|
||||
raise ValueError("Wrong rows")
|
||||
except:
|
||||
|
||||
except xgb.core.XGBoostError:
|
||||
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
|
||||
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
|
||||
tmp = time.time()
|
||||
X, y = make_classification(args.rows, n_features=args.columns, n_redundant=0, n_informative=args.columns, n_repeated=0, random_state=7)
|
||||
X, y = make_classification(args.rows, n_features=args.columns, n_redundant=0,
|
||||
n_informative=args.columns, n_repeated=0, random_state=7)
|
||||
if args.sparsity < 1.0:
|
||||
X = np.array([[np.nan if rng.uniform(0, 1) < args.sparsity else x for x in x_row] for x_row in X])
|
||||
X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row]
|
||||
for x_row in X])
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.test_size, random_state=7)
|
||||
print ("Generate Time: %s seconds" % (str(time.time() - tmp)))
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=args.test_size,
|
||||
random_state=7)
|
||||
print("Generate Time: %s seconds" % (str(time.time() - tmp)))
|
||||
tmp = time.time()
|
||||
print ("DMatrix Start")
|
||||
print("DMatrix Start")
|
||||
dtrain = xgb.DMatrix(X_train, y_train)
|
||||
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
|
||||
print ("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
|
||||
print("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
|
||||
|
||||
dtest.save_binary('dtest.dm')
|
||||
dtrain.save_binary('dtrain.dm')
|
||||
|
||||
param = {'objective': 'binary:logistic'}
|
||||
if args.params is not '':
|
||||
if args.params != '':
|
||||
param.update(ast.literal_eval(args.params))
|
||||
|
||||
param['tree_method'] = args.tree_method
|
||||
print("Training with '%s'" % param['tree_method'])
|
||||
tmp = time.time()
|
||||
xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")])
|
||||
print ("Train Time: %s seconds" % (str(time.time() - tmp)))
|
||||
print("Train Time: %s seconds" % (str(time.time() - tmp)))
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--tree_method', default='gpu_hist')
|
||||
parser.add_argument('--sparsity', type=float, default=0.0)
|
||||
parser.add_argument('--rows', type=int, default=1000000)
|
||||
parser.add_argument('--columns', type=int, default=50)
|
||||
parser.add_argument('--iterations', type=int, default=500)
|
||||
parser.add_argument('--test_size', type=float, default=0.25)
|
||||
parser.add_argument('--params', default='', help='Provide additional parameters as a Python dict string, e.g. --params \"{\'max_depth\':2}\"')
|
||||
args = parser.parse_args()
|
||||
|
||||
run_benchmark(args)
|
||||
def main():
|
||||
"""The main function.
|
||||
|
||||
Defines and parses command line arguments and calls the benchmark.
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--tree_method', default='gpu_hist')
|
||||
parser.add_argument('--sparsity', type=float, default=0.0)
|
||||
parser.add_argument('--rows', type=int, default=1000000)
|
||||
parser.add_argument('--columns', type=int, default=50)
|
||||
parser.add_argument('--iterations', type=int, default=500)
|
||||
parser.add_argument('--test_size', type=float, default=0.25)
|
||||
parser.add_argument('--params', default='',
|
||||
help='Provide additional parameters as a Python dict string, e.g. --params '
|
||||
'\"{\'max_depth\':2}\"')
|
||||
args = parser.parse_args()
|
||||
|
||||
run_benchmark(args)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user