Save model in ubj as the default. (#9947)
This commit is contained in:
parent
c03a4d5088
commit
38dd91f491
@ -30,9 +30,6 @@ import org.apache.spark.ml.param.Params
|
|||||||
import org.apache.spark.ml.util.DefaultParamsReader.Metadata
|
import org.apache.spark.ml.util.DefaultParamsReader.Metadata
|
||||||
|
|
||||||
abstract class XGBoostWriter extends MLWriter {
|
abstract class XGBoostWriter extends MLWriter {
|
||||||
|
|
||||||
/** Currently it's using the "deprecated" format as
|
|
||||||
* default, which will be changed into `ubj` in future releases. */
|
|
||||||
def getModelFormat(): String = {
|
def getModelFormat(): String = {
|
||||||
optionMap.getOrElse("format", JBooster.DEFAULT_FORMAT)
|
optionMap.getOrElse("format", JBooster.DEFAULT_FORMAT)
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
/*
|
/*
|
||||||
Copyright (c) 2014-2022 by Contributors
|
Copyright (c) 2014-2024 by Contributors
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
you may not use this file except in compliance with the License.
|
you may not use this file except in compliance with the License.
|
||||||
@ -432,6 +432,7 @@ class XGBoostClassifierSuite extends AnyFunSuite with PerTest with TmpFolderPerS
|
|||||||
val xgb = new XGBoostClassifier(paramMap)
|
val xgb = new XGBoostClassifier(paramMap)
|
||||||
val model = xgb.fit(trainingDF)
|
val model = xgb.fit(trainingDF)
|
||||||
|
|
||||||
|
// test json
|
||||||
val modelPath = new File(tempDir.toFile, "xgbc").getPath
|
val modelPath = new File(tempDir.toFile, "xgbc").getPath
|
||||||
model.write.option("format", "json").save(modelPath)
|
model.write.option("format", "json").save(modelPath)
|
||||||
val nativeJsonModelPath = new File(tempDir.toFile, "nativeModel.json").getPath
|
val nativeJsonModelPath = new File(tempDir.toFile, "nativeModel.json").getPath
|
||||||
@ -439,21 +440,21 @@ class XGBoostClassifierSuite extends AnyFunSuite with PerTest with TmpFolderPerS
|
|||||||
assert(compareTwoFiles(new File(modelPath, "data/XGBoostClassificationModel").getPath,
|
assert(compareTwoFiles(new File(modelPath, "data/XGBoostClassificationModel").getPath,
|
||||||
nativeJsonModelPath))
|
nativeJsonModelPath))
|
||||||
|
|
||||||
// test default "deprecated"
|
// test ubj
|
||||||
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
||||||
model.write.save(modelUbjPath)
|
model.write.save(modelUbjPath)
|
||||||
val nativeDeprecatedModelPath = new File(tempDir.toFile, "nativeModel").getPath
|
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel.ubj").getPath
|
||||||
model.nativeBooster.saveModel(nativeDeprecatedModelPath)
|
model.nativeBooster.saveModel(nativeUbjModelPath)
|
||||||
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostClassificationModel").getPath,
|
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostClassificationModel").getPath,
|
||||||
nativeDeprecatedModelPath))
|
nativeUbjModelPath))
|
||||||
|
|
||||||
// json file should be indifferent with ubj file
|
// json file should be indifferent with ubj file
|
||||||
val modelJsonPath = new File(tempDir.toFile, "xgbcJson").getPath
|
val modelJsonPath = new File(tempDir.toFile, "xgbcJson").getPath
|
||||||
model.write.option("format", "json").save(modelJsonPath)
|
model.write.option("format", "json").save(modelJsonPath)
|
||||||
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel1.ubj").getPath
|
val nativeUbjModelPath1 = new File(tempDir.toFile, "nativeModel1.ubj").getPath
|
||||||
model.nativeBooster.saveModel(nativeUbjModelPath)
|
model.nativeBooster.saveModel(nativeUbjModelPath1)
|
||||||
assert(!compareTwoFiles(new File(modelJsonPath, "data/XGBoostClassificationModel").getPath,
|
assert(!compareTwoFiles(new File(modelJsonPath, "data/XGBoostClassificationModel").getPath,
|
||||||
nativeUbjModelPath))
|
nativeUbjModelPath1))
|
||||||
}
|
}
|
||||||
|
|
||||||
test("native json model file should store feature_name and feature_type") {
|
test("native json model file should store feature_name and feature_type") {
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
/*
|
/*
|
||||||
Copyright (c) 2014-2022 by Contributors
|
Copyright (c) 2014-2024 by Contributors
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
you may not use this file except in compliance with the License.
|
you may not use this file except in compliance with the License.
|
||||||
@ -333,21 +333,24 @@ class XGBoostRegressorSuite extends AnyFunSuite with PerTest with TmpFolderPerSu
|
|||||||
assert(compareTwoFiles(new File(modelPath, "data/XGBoostRegressionModel").getPath,
|
assert(compareTwoFiles(new File(modelPath, "data/XGBoostRegressionModel").getPath,
|
||||||
nativeJsonModelPath))
|
nativeJsonModelPath))
|
||||||
|
|
||||||
// test default "deprecated"
|
// test default "ubj"
|
||||||
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
val modelUbjPath = new File(tempDir.toFile, "xgbcUbj").getPath
|
||||||
model.write.save(modelUbjPath)
|
model.write.save(modelUbjPath)
|
||||||
val nativeDeprecatedModelPath = new File(tempDir.toFile, "nativeModel").getPath
|
|
||||||
model.nativeBooster.saveModel(nativeDeprecatedModelPath)
|
|
||||||
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostRegressionModel").getPath,
|
|
||||||
nativeDeprecatedModelPath))
|
|
||||||
|
|
||||||
// json file should be indifferent with ubj file
|
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel.ubj").getPath
|
||||||
val modelJsonPath = new File(tempDir.toFile, "xgbcJson").getPath
|
|
||||||
model.write.option("format", "json").save(modelJsonPath)
|
|
||||||
val nativeUbjModelPath = new File(tempDir.toFile, "nativeModel1.ubj").getPath
|
|
||||||
model.nativeBooster.saveModel(nativeUbjModelPath)
|
model.nativeBooster.saveModel(nativeUbjModelPath)
|
||||||
assert(!compareTwoFiles(new File(modelJsonPath, "data/XGBoostRegressionModel").getPath,
|
|
||||||
nativeUbjModelPath))
|
|
||||||
}
|
|
||||||
|
|
||||||
|
assert(compareTwoFiles(new File(modelUbjPath, "data/XGBoostRegressionModel").getPath,
|
||||||
|
nativeUbjModelPath))
|
||||||
|
|
||||||
|
// test the deprecated format
|
||||||
|
val modelDeprecatedPath = new File(tempDir.toFile, "modelDeprecated").getPath
|
||||||
|
model.write.option("format", "deprecated").save(modelDeprecatedPath)
|
||||||
|
|
||||||
|
val nativeDeprecatedModelPath = new File(tempDir.toFile, "nativeModel.deprecated").getPath
|
||||||
|
model.nativeBooster.saveModel(nativeDeprecatedModelPath)
|
||||||
|
|
||||||
|
assert(compareTwoFiles(new File(modelDeprecatedPath, "data/XGBoostRegressionModel").getPath,
|
||||||
|
nativeDeprecatedModelPath))
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -34,7 +34,7 @@ import org.apache.commons.logging.LogFactory;
|
|||||||
* Booster for xgboost, this is a model API that support interactive build of a XGBoost Model
|
* Booster for xgboost, this is a model API that support interactive build of a XGBoost Model
|
||||||
*/
|
*/
|
||||||
public class Booster implements Serializable, KryoSerializable {
|
public class Booster implements Serializable, KryoSerializable {
|
||||||
public static final String DEFAULT_FORMAT = "deprecated";
|
public static final String DEFAULT_FORMAT = "ubj";
|
||||||
private static final Log logger = LogFactory.getLog(Booster.class);
|
private static final Log logger = LogFactory.getLog(Booster.class);
|
||||||
// handle to the booster.
|
// handle to the booster.
|
||||||
private long handle = 0;
|
private long handle = 0;
|
||||||
@ -788,8 +788,7 @@ public class Booster implements Serializable, KryoSerializable {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Save model into raw byte array. Currently it's using the deprecated format as
|
* Save model into raw byte array in the UBJSON ("ubj") format.
|
||||||
* default, which will be changed into `ubj` in future releases.
|
|
||||||
*
|
*
|
||||||
* @return the saved byte array
|
* @return the saved byte array
|
||||||
* @throws XGBoostError native error
|
* @throws XGBoostError native error
|
||||||
|
|||||||
@ -337,8 +337,7 @@ class Booster private[xgboost4j](private[xgboost4j] var booster: JBooster)
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Save model into a raw byte array. Currently it's using the deprecated format as
|
* Save model into a raw byte array in the UBJSON ("ubj") format.
|
||||||
* default, which will be changed into `ubj` in future releases.
|
|
||||||
*/
|
*/
|
||||||
@throws(classOf[XGBoostError])
|
@throws(classOf[XGBoostError])
|
||||||
def toByteArray: Array[Byte] = {
|
def toByteArray: Array[Byte] = {
|
||||||
|
|||||||
@ -2613,7 +2613,7 @@ class Booster:
|
|||||||
else:
|
else:
|
||||||
raise TypeError("fname must be a string or os PathLike")
|
raise TypeError("fname must be a string or os PathLike")
|
||||||
|
|
||||||
def save_raw(self, raw_format: str = "deprecated") -> bytearray:
|
def save_raw(self, raw_format: str = "ubj") -> bytearray:
|
||||||
"""Save the model to a in memory buffer representation instead of file.
|
"""Save the model to a in memory buffer representation instead of file.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
|
|||||||
@ -630,7 +630,7 @@ sparse_datasets_strategy = strategies.sampled_from(
|
|||||||
|
|
||||||
def make_datasets_with_margin(
|
def make_datasets_with_margin(
|
||||||
unweighted_strategy: strategies.SearchStrategy,
|
unweighted_strategy: strategies.SearchStrategy,
|
||||||
) -> Callable:
|
) -> Callable[[], strategies.SearchStrategy[TestDataset]]:
|
||||||
"""Factory function for creating strategies that generates datasets with weight and
|
"""Factory function for creating strategies that generates datasets with weight and
|
||||||
base margin.
|
base margin.
|
||||||
|
|
||||||
@ -668,8 +668,7 @@ def make_datasets_with_margin(
|
|||||||
|
|
||||||
# A strategy for drawing from a set of example datasets. May add random weights to the
|
# A strategy for drawing from a set of example datasets. May add random weights to the
|
||||||
# dataset
|
# dataset
|
||||||
@memory.cache
|
def make_dataset_strategy() -> strategies.SearchStrategy[TestDataset]:
|
||||||
def make_dataset_strategy() -> Callable:
|
|
||||||
_unweighted_datasets_strategy = strategies.sampled_from(
|
_unweighted_datasets_strategy = strategies.sampled_from(
|
||||||
[
|
[
|
||||||
TestDataset(
|
TestDataset(
|
||||||
|
|||||||
@ -1313,10 +1313,8 @@ XGB_DLL int XGBoosterLoadModel(BoosterHandle handle, const char* fname) {
|
|||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
void WarnOldModel() {
|
void WarnOldModel() {
|
||||||
if (XGBOOST_VER_MAJOR >= 2) {
|
|
||||||
LOG(WARNING) << "Saving into deprecated binary model format, please consider using `json` or "
|
LOG(WARNING) << "Saving into deprecated binary model format, please consider using `json` or "
|
||||||
"`ubj`. Model format will default to JSON in XGBoost 2.2 if not specified.";
|
"`ubj`. Model format is default to UBJSON in XGBoost 2.1 if not specified.";
|
||||||
}
|
|
||||||
}
|
}
|
||||||
} // anonymous namespace
|
} // anonymous namespace
|
||||||
|
|
||||||
@ -1339,14 +1337,14 @@ XGB_DLL int XGBoosterSaveModel(BoosterHandle handle, const char *fname) {
|
|||||||
save_json(std::ios::out);
|
save_json(std::ios::out);
|
||||||
} else if (common::FileExtension(fname) == "ubj") {
|
} else if (common::FileExtension(fname) == "ubj") {
|
||||||
save_json(std::ios::binary);
|
save_json(std::ios::binary);
|
||||||
} else if (XGBOOST_VER_MAJOR == 2 && XGBOOST_VER_MINOR >= 2) {
|
} else if (common::FileExtension(fname) == "deprecated") {
|
||||||
LOG(WARNING) << "Saving model to JSON as default. You can use file extension `json`, `ubj` or "
|
|
||||||
"`deprecated` to choose between formats.";
|
|
||||||
save_json(std::ios::out);
|
|
||||||
} else {
|
|
||||||
WarnOldModel();
|
WarnOldModel();
|
||||||
auto *bst = static_cast<Learner *>(handle);
|
auto *bst = static_cast<Learner *>(handle);
|
||||||
bst->SaveModel(fo.get());
|
bst->SaveModel(fo.get());
|
||||||
|
} else {
|
||||||
|
LOG(WARNING) << "Saving model in the UBJSON format as default. You can use file extension:"
|
||||||
|
" `json`, `ubj` or `deprecated` to choose between formats.";
|
||||||
|
save_json(std::ios::binary);
|
||||||
}
|
}
|
||||||
API_END();
|
API_END();
|
||||||
}
|
}
|
||||||
|
|||||||
@ -27,6 +27,7 @@ class LintersPaths:
|
|||||||
"tests/python/test_quantile_dmatrix.py",
|
"tests/python/test_quantile_dmatrix.py",
|
||||||
"tests/python/test_tree_regularization.py",
|
"tests/python/test_tree_regularization.py",
|
||||||
"tests/python/test_shap.py",
|
"tests/python/test_shap.py",
|
||||||
|
"tests/python/test_model_io.py",
|
||||||
"tests/python/test_with_pandas.py",
|
"tests/python/test_with_pandas.py",
|
||||||
"tests/python-gpu/",
|
"tests/python-gpu/",
|
||||||
"tests/python-sycl/",
|
"tests/python-sycl/",
|
||||||
@ -83,6 +84,7 @@ class LintersPaths:
|
|||||||
"tests/python/test_multi_target.py",
|
"tests/python/test_multi_target.py",
|
||||||
"tests/python-gpu/test_gpu_data_iterator.py",
|
"tests/python-gpu/test_gpu_data_iterator.py",
|
||||||
"tests/python-gpu/load_pickle.py",
|
"tests/python-gpu/load_pickle.py",
|
||||||
|
"tests/python/test_model_io.py",
|
||||||
"tests/test_distributed/test_with_spark/test_data.py",
|
"tests/test_distributed/test_with_spark/test_data.py",
|
||||||
"tests/test_distributed/test_gpu_with_spark/test_data.py",
|
"tests/test_distributed/test_gpu_with_spark/test_data.py",
|
||||||
"tests/test_distributed/test_gpu_with_dask/test_gpu_with_dask.py",
|
"tests/test_distributed/test_gpu_with_dask/test_gpu_with_dask.py",
|
||||||
|
|||||||
@ -10,46 +10,48 @@ import pytest
|
|||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
from xgboost import testing as tm
|
from xgboost import testing as tm
|
||||||
|
|
||||||
dpath = 'demo/data/'
|
dpath = "demo/data/"
|
||||||
rng = np.random.RandomState(1994)
|
rng = np.random.RandomState(1994)
|
||||||
|
|
||||||
|
|
||||||
class TestBasic:
|
class TestBasic:
|
||||||
def test_compat(self):
|
def test_compat(self):
|
||||||
from xgboost.compat import lazy_isinstance
|
from xgboost.compat import lazy_isinstance
|
||||||
|
|
||||||
a = np.array([1, 2, 3])
|
a = np.array([1, 2, 3])
|
||||||
assert lazy_isinstance(a, 'numpy', 'ndarray')
|
assert lazy_isinstance(a, "numpy", "ndarray")
|
||||||
assert not lazy_isinstance(a, 'numpy', 'dataframe')
|
assert not lazy_isinstance(a, "numpy", "dataframe")
|
||||||
|
|
||||||
def test_basic(self):
|
def test_basic(self):
|
||||||
dtrain, dtest = tm.load_agaricus(__file__)
|
dtrain, dtest = tm.load_agaricus(__file__)
|
||||||
param = {'max_depth': 2, 'eta': 1,
|
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
||||||
'objective': 'binary:logistic'}
|
|
||||||
# specify validations set to watch performance
|
# specify validations set to watch performance
|
||||||
watchlist = [(dtrain, 'train')]
|
watchlist = [(dtrain, "train")]
|
||||||
num_round = 2
|
num_round = 2
|
||||||
bst = xgb.train(param, dtrain, num_round, watchlist, verbose_eval=True)
|
bst = xgb.train(param, dtrain, num_round, evals=watchlist, verbose_eval=True)
|
||||||
|
|
||||||
preds = bst.predict(dtrain)
|
preds = bst.predict(dtrain)
|
||||||
labels = dtrain.get_label()
|
labels = dtrain.get_label()
|
||||||
err = sum(1 for i in range(len(preds))
|
err = sum(
|
||||||
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
||||||
|
) / float(len(preds))
|
||||||
# error must be smaller than 10%
|
# error must be smaller than 10%
|
||||||
assert err < 0.1
|
assert err < 0.1
|
||||||
|
|
||||||
preds = bst.predict(dtest)
|
preds = bst.predict(dtest)
|
||||||
labels = dtest.get_label()
|
labels = dtest.get_label()
|
||||||
err = sum(1 for i in range(len(preds))
|
err = sum(
|
||||||
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
||||||
|
) / float(len(preds))
|
||||||
# error must be smaller than 10%
|
# error must be smaller than 10%
|
||||||
assert err < 0.1
|
assert err < 0.1
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
dtest_path = os.path.join(tmpdir, 'dtest.dmatrix')
|
dtest_path = os.path.join(tmpdir, "dtest.dmatrix")
|
||||||
# save dmatrix into binary buffer
|
# save dmatrix into binary buffer
|
||||||
dtest.save_binary(dtest_path)
|
dtest.save_binary(dtest_path)
|
||||||
# save model
|
# save model
|
||||||
model_path = os.path.join(tmpdir, 'model.booster')
|
model_path = os.path.join(tmpdir, "model.ubj")
|
||||||
bst.save_model(model_path)
|
bst.save_model(model_path)
|
||||||
# load model and data in
|
# load model and data in
|
||||||
bst2 = xgb.Booster(model_file=model_path)
|
bst2 = xgb.Booster(model_file=model_path)
|
||||||
@ -59,17 +61,21 @@ class TestBasic:
|
|||||||
assert np.sum(np.abs(preds2 - preds)) == 0
|
assert np.sum(np.abs(preds2 - preds)) == 0
|
||||||
|
|
||||||
def test_metric_config(self):
|
def test_metric_config(self):
|
||||||
# Make sure that the metric configuration happens in booster so the
|
# Make sure that the metric configuration happens in booster so the string
|
||||||
# string `['error', 'auc']` doesn't get passed down to core.
|
# `['error', 'auc']` doesn't get passed down to core.
|
||||||
dtrain, dtest = tm.load_agaricus(__file__)
|
dtrain, dtest = tm.load_agaricus(__file__)
|
||||||
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
param = {
|
||||||
'objective': 'binary:logistic', 'eval_metric': ['error', 'auc']}
|
"max_depth": 2,
|
||||||
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
"eta": 1,
|
||||||
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": ["error", "auc"],
|
||||||
|
}
|
||||||
|
watchlist = [(dtest, "eval"), (dtrain, "train")]
|
||||||
num_round = 2
|
num_round = 2
|
||||||
booster = xgb.train(param, dtrain, num_round, watchlist)
|
booster = xgb.train(param, dtrain, num_round, evals=watchlist)
|
||||||
predt_0 = booster.predict(dtrain)
|
predt_0 = booster.predict(dtrain)
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
path = os.path.join(tmpdir, 'model.json')
|
path = os.path.join(tmpdir, "model.json")
|
||||||
booster.save_model(path)
|
booster.save_model(path)
|
||||||
|
|
||||||
booster = xgb.Booster(params=param, model_file=path)
|
booster = xgb.Booster(params=param, model_file=path)
|
||||||
@ -78,22 +84,23 @@ class TestBasic:
|
|||||||
|
|
||||||
def test_multiclass(self):
|
def test_multiclass(self):
|
||||||
dtrain, dtest = tm.load_agaricus(__file__)
|
dtrain, dtest = tm.load_agaricus(__file__)
|
||||||
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'num_class': 2}
|
param = {"max_depth": 2, "eta": 1, "num_class": 2}
|
||||||
# specify validations set to watch performance
|
# specify validations set to watch performance
|
||||||
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
watchlist = [(dtest, "eval"), (dtrain, "train")]
|
||||||
num_round = 2
|
num_round = 2
|
||||||
bst = xgb.train(param, dtrain, num_round, watchlist)
|
bst = xgb.train(param, dtrain, num_round, evals=watchlist)
|
||||||
# this is prediction
|
# this is prediction
|
||||||
preds = bst.predict(dtest)
|
preds = bst.predict(dtest)
|
||||||
labels = dtest.get_label()
|
labels = dtest.get_label()
|
||||||
err = sum(1 for i in range(len(preds))
|
err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
|
||||||
if preds[i] != labels[i]) / float(len(preds))
|
len(preds)
|
||||||
|
)
|
||||||
# error must be smaller than 10%
|
# error must be smaller than 10%
|
||||||
assert err < 0.1
|
assert err < 0.1
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
dtest_path = os.path.join(tmpdir, 'dtest.buffer')
|
dtest_path = os.path.join(tmpdir, "dtest.buffer")
|
||||||
model_path = os.path.join(tmpdir, 'xgb.model')
|
model_path = os.path.join(tmpdir, "model.ubj")
|
||||||
# save dmatrix into binary buffer
|
# save dmatrix into binary buffer
|
||||||
dtest.save_binary(dtest_path)
|
dtest.save_binary(dtest_path)
|
||||||
# save model
|
# save model
|
||||||
@ -108,33 +115,39 @@ class TestBasic:
|
|||||||
def test_dump(self):
|
def test_dump(self):
|
||||||
data = np.random.randn(100, 2)
|
data = np.random.randn(100, 2)
|
||||||
target = np.array([0, 1] * 50)
|
target = np.array([0, 1] * 50)
|
||||||
features = ['Feature1', 'Feature2']
|
features = ["Feature1", "Feature2"]
|
||||||
|
|
||||||
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
||||||
params = {'objective': 'binary:logistic',
|
params = {
|
||||||
'eval_metric': 'logloss',
|
"objective": "binary:logistic",
|
||||||
'eta': 0.3,
|
"eval_metric": "logloss",
|
||||||
'max_depth': 1}
|
"eta": 0.3,
|
||||||
|
"max_depth": 1,
|
||||||
|
}
|
||||||
|
|
||||||
bst = xgb.train(params, dm, num_boost_round=1)
|
bst = xgb.train(params, dm, num_boost_round=1)
|
||||||
|
|
||||||
# number of feature importances should == number of features
|
# number of feature importances should == number of features
|
||||||
dump1 = bst.get_dump()
|
dump1 = bst.get_dump()
|
||||||
assert len(dump1) == 1, 'Expected only 1 tree to be dumped.'
|
assert len(dump1) == 1, "Expected only 1 tree to be dumped."
|
||||||
len(dump1[0].splitlines()) == 3, 'Expected 1 root and 2 leaves - 3 lines in dump.'
|
len(
|
||||||
|
dump1[0].splitlines()
|
||||||
|
) == 3, "Expected 1 root and 2 leaves - 3 lines in dump."
|
||||||
|
|
||||||
dump2 = bst.get_dump(with_stats=True)
|
dump2 = bst.get_dump(with_stats=True)
|
||||||
assert dump2[0].count('\n') == 3, 'Expected 1 root and 2 leaves - 3 lines in dump.'
|
assert (
|
||||||
msg = 'Expected more info when with_stats=True is given.'
|
dump2[0].count("\n") == 3
|
||||||
assert dump2[0].find('\n') > dump1[0].find('\n'), msg
|
), "Expected 1 root and 2 leaves - 3 lines in dump."
|
||||||
|
msg = "Expected more info when with_stats=True is given."
|
||||||
|
assert dump2[0].find("\n") > dump1[0].find("\n"), msg
|
||||||
|
|
||||||
dump3 = bst.get_dump(dump_format="json")
|
dump3 = bst.get_dump(dump_format="json")
|
||||||
dump3j = json.loads(dump3[0])
|
dump3j = json.loads(dump3[0])
|
||||||
assert dump3j['nodeid'] == 0, 'Expected the root node on top.'
|
assert dump3j["nodeid"] == 0, "Expected the root node on top."
|
||||||
|
|
||||||
dump4 = bst.get_dump(dump_format="json", with_stats=True)
|
dump4 = bst.get_dump(dump_format="json", with_stats=True)
|
||||||
dump4j = json.loads(dump4[0])
|
dump4j = json.loads(dump4[0])
|
||||||
assert 'gain' in dump4j, "Expected 'gain' to be dumped in JSON."
|
assert "gain" in dump4j, "Expected 'gain' to be dumped in JSON."
|
||||||
|
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
bst.get_dump(fmap="foo")
|
bst.get_dump(fmap="foo")
|
||||||
@ -163,12 +176,14 @@ class TestBasic:
|
|||||||
|
|
||||||
def test_load_file_invalid(self):
|
def test_load_file_invalid(self):
|
||||||
with pytest.raises(xgb.core.XGBoostError):
|
with pytest.raises(xgb.core.XGBoostError):
|
||||||
xgb.Booster(model_file='incorrect_path')
|
xgb.Booster(model_file="incorrect_path")
|
||||||
|
|
||||||
with pytest.raises(xgb.core.XGBoostError):
|
with pytest.raises(xgb.core.XGBoostError):
|
||||||
xgb.Booster(model_file=u'不正なパス')
|
xgb.Booster(model_file="不正なパス")
|
||||||
|
|
||||||
@pytest.mark.parametrize("path", ["모델.ubj", "がうる・ぐら.json"], ids=["path-0", "path-1"])
|
@pytest.mark.parametrize(
|
||||||
|
"path", ["모델.ubj", "がうる・ぐら.json"], ids=["path-0", "path-1"]
|
||||||
|
)
|
||||||
def test_unicode_path(self, tmpdir, path):
|
def test_unicode_path(self, tmpdir, path):
|
||||||
model_path = pathlib.Path(tmpdir) / path
|
model_path = pathlib.Path(tmpdir) / path
|
||||||
dtrain, _ = tm.load_agaricus(__file__)
|
dtrain, _ = tm.load_agaricus(__file__)
|
||||||
@ -180,12 +195,11 @@ class TestBasic:
|
|||||||
assert bst.get_dump(dump_format="text") == bst2.get_dump(dump_format="text")
|
assert bst.get_dump(dump_format="text") == bst2.get_dump(dump_format="text")
|
||||||
|
|
||||||
def test_dmatrix_numpy_init_omp(self):
|
def test_dmatrix_numpy_init_omp(self):
|
||||||
|
|
||||||
rows = [1000, 11326, 15000]
|
rows = [1000, 11326, 15000]
|
||||||
cols = 50
|
cols = 50
|
||||||
for row in rows:
|
for row in rows:
|
||||||
X = np.random.randn(row, cols)
|
X = np.random.randn(row, cols)
|
||||||
y = np.random.randn(row).astype('f')
|
y = np.random.randn(row).astype("f")
|
||||||
dm = xgb.DMatrix(X, y, nthread=0)
|
dm = xgb.DMatrix(X, y, nthread=0)
|
||||||
np.testing.assert_array_equal(dm.get_label(), y)
|
np.testing.assert_array_equal(dm.get_label(), y)
|
||||||
assert dm.num_row() == row
|
assert dm.num_row() == row
|
||||||
@ -198,8 +212,7 @@ class TestBasic:
|
|||||||
|
|
||||||
def test_cv(self):
|
def test_cv(self):
|
||||||
dm, _ = tm.load_agaricus(__file__)
|
dm, _ = tm.load_agaricus(__file__)
|
||||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
||||||
'objective': 'binary:logistic'}
|
|
||||||
|
|
||||||
# return np.ndarray
|
# return np.ndarray
|
||||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
|
||||||
@ -208,19 +221,18 @@ class TestBasic:
|
|||||||
|
|
||||||
def test_cv_no_shuffle(self):
|
def test_cv_no_shuffle(self):
|
||||||
dm, _ = tm.load_agaricus(__file__)
|
dm, _ = tm.load_agaricus(__file__)
|
||||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
||||||
'objective': 'binary:logistic'}
|
|
||||||
|
|
||||||
# return np.ndarray
|
# return np.ndarray
|
||||||
cv = xgb.cv(params, dm, num_boost_round=10, shuffle=False, nfold=10,
|
cv = xgb.cv(
|
||||||
as_pandas=False)
|
params, dm, num_boost_round=10, shuffle=False, nfold=10, as_pandas=False
|
||||||
|
)
|
||||||
assert isinstance(cv, dict)
|
assert isinstance(cv, dict)
|
||||||
assert len(cv) == (4)
|
assert len(cv) == (4)
|
||||||
|
|
||||||
def test_cv_explicit_fold_indices(self):
|
def test_cv_explicit_fold_indices(self):
|
||||||
dm, _ = tm.load_agaricus(__file__)
|
dm, _ = tm.load_agaricus(__file__)
|
||||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective':
|
params = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
|
||||||
'binary:logistic'}
|
|
||||||
folds = [
|
folds = [
|
||||||
# Train Test
|
# Train Test
|
||||||
([1, 3], [5, 8]),
|
([1, 3], [5, 8]),
|
||||||
@ -228,15 +240,13 @@ class TestBasic:
|
|||||||
]
|
]
|
||||||
|
|
||||||
# return np.ndarray
|
# return np.ndarray
|
||||||
cv = xgb.cv(params, dm, num_boost_round=10, folds=folds,
|
cv = xgb.cv(params, dm, num_boost_round=10, folds=folds, as_pandas=False)
|
||||||
as_pandas=False)
|
|
||||||
assert isinstance(cv, dict)
|
assert isinstance(cv, dict)
|
||||||
assert len(cv) == (4)
|
assert len(cv) == (4)
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.skip_s390x())
|
@pytest.mark.skipif(**tm.skip_s390x())
|
||||||
def test_cv_explicit_fold_indices_labels(self):
|
def test_cv_explicit_fold_indices_labels(self):
|
||||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective':
|
params = {"max_depth": 2, "eta": 1, "objective": "reg:squarederror"}
|
||||||
'reg:squarederror'}
|
|
||||||
N = 100
|
N = 100
|
||||||
F = 3
|
F = 3
|
||||||
dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
|
dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
|
||||||
@ -252,9 +262,10 @@ class TestBasic:
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
def after_iteration(
|
def after_iteration(
|
||||||
self, model,
|
self,
|
||||||
|
model,
|
||||||
epoch: int,
|
epoch: int,
|
||||||
evals_log: xgb.callback.TrainingCallback.EvalsLog
|
evals_log: xgb.callback.TrainingCallback.EvalsLog,
|
||||||
):
|
):
|
||||||
print([fold.dtest.get_label() for fold in model.cvfolds])
|
print([fold.dtest.get_label() for fold in model.cvfolds])
|
||||||
|
|
||||||
@ -263,12 +274,18 @@ class TestBasic:
|
|||||||
# Run cross validation and capture standard out to test callback result
|
# Run cross validation and capture standard out to test callback result
|
||||||
with tm.captured_output() as (out, err):
|
with tm.captured_output() as (out, err):
|
||||||
xgb.cv(
|
xgb.cv(
|
||||||
params, dm, num_boost_round=1, folds=folds, callbacks=[cb],
|
params,
|
||||||
as_pandas=False
|
dm,
|
||||||
|
num_boost_round=1,
|
||||||
|
folds=folds,
|
||||||
|
callbacks=[cb],
|
||||||
|
as_pandas=False,
|
||||||
)
|
)
|
||||||
output = out.getvalue().strip()
|
output = out.getvalue().strip()
|
||||||
solution = ('[array([5., 8.], dtype=float32), array([23., 43., 11.],' +
|
solution = (
|
||||||
' dtype=float32)]')
|
"[array([5., 8.], dtype=float32), array([23., 43., 11.],"
|
||||||
|
+ " dtype=float32)]"
|
||||||
|
)
|
||||||
assert output == solution
|
assert output == solution
|
||||||
|
|
||||||
|
|
||||||
@ -285,7 +302,7 @@ class TestBasicPathLike:
|
|||||||
"""Saving to a binary file using pathlib from a DMatrix."""
|
"""Saving to a binary file using pathlib from a DMatrix."""
|
||||||
data = np.random.randn(100, 2)
|
data = np.random.randn(100, 2)
|
||||||
target = np.array([0, 1] * 50)
|
target = np.array([0, 1] * 50)
|
||||||
features = ['Feature1', 'Feature2']
|
features = ["Feature1", "Feature2"]
|
||||||
|
|
||||||
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
||||||
|
|
||||||
@ -299,42 +316,3 @@ class TestBasicPathLike:
|
|||||||
"""An invalid model_file path should raise XGBoostError."""
|
"""An invalid model_file path should raise XGBoostError."""
|
||||||
with pytest.raises(xgb.core.XGBoostError):
|
with pytest.raises(xgb.core.XGBoostError):
|
||||||
xgb.Booster(model_file=Path("invalidpath"))
|
xgb.Booster(model_file=Path("invalidpath"))
|
||||||
|
|
||||||
def test_Booster_save_and_load(self):
|
|
||||||
"""Saving and loading model files from paths."""
|
|
||||||
save_path = Path("saveload.model")
|
|
||||||
|
|
||||||
data = np.random.randn(100, 2)
|
|
||||||
target = np.array([0, 1] * 50)
|
|
||||||
features = ['Feature1', 'Feature2']
|
|
||||||
|
|
||||||
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
|
||||||
params = {'objective': 'binary:logistic',
|
|
||||||
'eval_metric': 'logloss',
|
|
||||||
'eta': 0.3,
|
|
||||||
'max_depth': 1}
|
|
||||||
|
|
||||||
bst = xgb.train(params, dm, num_boost_round=1)
|
|
||||||
|
|
||||||
# save, assert exists
|
|
||||||
bst.save_model(save_path)
|
|
||||||
assert save_path.exists()
|
|
||||||
|
|
||||||
def dump_assertions(dump):
|
|
||||||
"""Assertions for the expected dump from Booster"""
|
|
||||||
assert len(dump) == 1, 'Exepcted only 1 tree to be dumped.'
|
|
||||||
assert len(dump[0].splitlines()) == 3, 'Expected 1 root and 2 leaves - 3 lines.'
|
|
||||||
|
|
||||||
# load the model again using Path
|
|
||||||
bst2 = xgb.Booster(model_file=save_path)
|
|
||||||
dump2 = bst2.get_dump()
|
|
||||||
dump_assertions(dump2)
|
|
||||||
|
|
||||||
# load again using load_model
|
|
||||||
bst3 = xgb.Booster()
|
|
||||||
bst3.load_model(save_path)
|
|
||||||
dump3 = bst3.get_dump()
|
|
||||||
dump_assertions(dump3)
|
|
||||||
|
|
||||||
# remove file
|
|
||||||
Path.unlink(save_path)
|
|
||||||
|
|||||||
@ -15,33 +15,9 @@ dpath = tm.data_dir(__file__)
|
|||||||
rng = np.random.RandomState(1994)
|
rng = np.random.RandomState(1994)
|
||||||
|
|
||||||
|
|
||||||
def json_model(model_path: str, parameters: dict) -> dict:
|
|
||||||
datasets = pytest.importorskip("sklearn.datasets")
|
|
||||||
|
|
||||||
X, y = datasets.make_classification(64, n_features=8, n_classes=3, n_informative=6)
|
|
||||||
if parameters.get("objective", None) == "multi:softmax":
|
|
||||||
parameters["num_class"] = 3
|
|
||||||
|
|
||||||
dm1 = xgb.DMatrix(X, y)
|
|
||||||
|
|
||||||
bst = xgb.train(parameters, dm1)
|
|
||||||
bst.save_model(model_path)
|
|
||||||
|
|
||||||
if model_path.endswith("ubj"):
|
|
||||||
import ubjson
|
|
||||||
|
|
||||||
with open(model_path, "rb") as ubjfd:
|
|
||||||
model = ubjson.load(ubjfd)
|
|
||||||
else:
|
|
||||||
with open(model_path, "r") as fd:
|
|
||||||
model = json.load(fd)
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
class TestModels:
|
class TestModels:
|
||||||
def test_glm(self):
|
def test_glm(self):
|
||||||
param = {'verbosity': 0, 'objective': 'binary:logistic',
|
param = {'objective': 'binary:logistic',
|
||||||
'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1,
|
'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1,
|
||||||
'nthread': 1}
|
'nthread': 1}
|
||||||
dtrain, dtest = tm.load_agaricus(__file__)
|
dtrain, dtest = tm.load_agaricus(__file__)
|
||||||
@ -73,7 +49,7 @@ class TestModels:
|
|||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
dtest_path = os.path.join(tmpdir, 'dtest.dmatrix')
|
dtest_path = os.path.join(tmpdir, 'dtest.dmatrix')
|
||||||
model_path = os.path.join(tmpdir, 'xgboost.model.dart')
|
model_path = os.path.join(tmpdir, "xgboost.model.dart.ubj")
|
||||||
# save dmatrix into binary buffer
|
# save dmatrix into binary buffer
|
||||||
dtest.save_binary(dtest_path)
|
dtest.save_binary(dtest_path)
|
||||||
model_path = model_path
|
model_path = model_path
|
||||||
@ -101,7 +77,6 @@ class TestModels:
|
|||||||
|
|
||||||
# check whether sample_type and normalize_type work
|
# check whether sample_type and normalize_type work
|
||||||
num_round = 50
|
num_round = 50
|
||||||
param['verbosity'] = 0
|
|
||||||
param['learning_rate'] = 0.1
|
param['learning_rate'] = 0.1
|
||||||
param['rate_drop'] = 0.1
|
param['rate_drop'] = 0.1
|
||||||
preds_list = []
|
preds_list = []
|
||||||
@ -214,8 +189,7 @@ class TestModels:
|
|||||||
assert set(evals_result['eval'].keys()) == {'auc', 'error', 'logloss'}
|
assert set(evals_result['eval'].keys()) == {'auc', 'error', 'logloss'}
|
||||||
|
|
||||||
def test_fpreproc(self):
|
def test_fpreproc(self):
|
||||||
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
|
||||||
'objective': 'binary:logistic'}
|
|
||||||
num_round = 2
|
num_round = 2
|
||||||
|
|
||||||
def fpreproc(dtrain, dtest, param):
|
def fpreproc(dtrain, dtest, param):
|
||||||
@ -229,8 +203,7 @@ class TestModels:
|
|||||||
metrics={'auc'}, seed=0, fpreproc=fpreproc)
|
metrics={'auc'}, seed=0, fpreproc=fpreproc)
|
||||||
|
|
||||||
def test_show_stdv(self):
|
def test_show_stdv(self):
|
||||||
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
|
||||||
'objective': 'binary:logistic'}
|
|
||||||
num_round = 2
|
num_round = 2
|
||||||
dtrain, _ = tm.load_agaricus(__file__)
|
dtrain, _ = tm.load_agaricus(__file__)
|
||||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||||
@ -273,142 +246,6 @@ class TestModels:
|
|||||||
bst = xgb.train([], dm2)
|
bst = xgb.train([], dm2)
|
||||||
bst.predict(dm2) # success
|
bst.predict(dm2) # success
|
||||||
|
|
||||||
def test_model_binary_io(self):
|
|
||||||
model_path = 'test_model_binary_io.bin'
|
|
||||||
parameters = {'tree_method': 'hist', 'booster': 'gbtree',
|
|
||||||
'scale_pos_weight': '0.5'}
|
|
||||||
X = np.random.random((10, 3))
|
|
||||||
y = np.random.random((10,))
|
|
||||||
dtrain = xgb.DMatrix(X, y)
|
|
||||||
bst = xgb.train(parameters, dtrain, num_boost_round=2)
|
|
||||||
bst.save_model(model_path)
|
|
||||||
bst = xgb.Booster(model_file=model_path)
|
|
||||||
os.remove(model_path)
|
|
||||||
config = json.loads(bst.save_config())
|
|
||||||
assert float(config['learner']['objective'][
|
|
||||||
'reg_loss_param']['scale_pos_weight']) == 0.5
|
|
||||||
|
|
||||||
buf = bst.save_raw()
|
|
||||||
from_raw = xgb.Booster()
|
|
||||||
from_raw.load_model(buf)
|
|
||||||
|
|
||||||
buf_from_raw = from_raw.save_raw()
|
|
||||||
assert buf == buf_from_raw
|
|
||||||
|
|
||||||
def run_model_json_io(self, parameters: dict, ext: str) -> None:
|
|
||||||
if ext == "ubj" and tm.no_ubjson()["condition"]:
|
|
||||||
pytest.skip(tm.no_ubjson()["reason"])
|
|
||||||
|
|
||||||
loc = locale.getpreferredencoding(False)
|
|
||||||
model_path = 'test_model_json_io.' + ext
|
|
||||||
j_model = json_model(model_path, parameters)
|
|
||||||
assert isinstance(j_model['learner'], dict)
|
|
||||||
|
|
||||||
bst = xgb.Booster(model_file=model_path)
|
|
||||||
|
|
||||||
bst.save_model(fname=model_path)
|
|
||||||
if ext == "ubj":
|
|
||||||
import ubjson
|
|
||||||
with open(model_path, "rb") as ubjfd:
|
|
||||||
j_model = ubjson.load(ubjfd)
|
|
||||||
else:
|
|
||||||
with open(model_path, 'r') as fd:
|
|
||||||
j_model = json.load(fd)
|
|
||||||
|
|
||||||
assert isinstance(j_model['learner'], dict)
|
|
||||||
|
|
||||||
os.remove(model_path)
|
|
||||||
assert locale.getpreferredencoding(False) == loc
|
|
||||||
|
|
||||||
json_raw = bst.save_raw(raw_format="json")
|
|
||||||
from_jraw = xgb.Booster()
|
|
||||||
from_jraw.load_model(json_raw)
|
|
||||||
|
|
||||||
ubj_raw = bst.save_raw(raw_format="ubj")
|
|
||||||
from_ubjraw = xgb.Booster()
|
|
||||||
from_ubjraw.load_model(ubj_raw)
|
|
||||||
|
|
||||||
if parameters.get("multi_strategy", None) != "multi_output_tree":
|
|
||||||
# old binary model is not supported.
|
|
||||||
old_from_json = from_jraw.save_raw(raw_format="deprecated")
|
|
||||||
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
|
|
||||||
|
|
||||||
assert old_from_json == old_from_ubj
|
|
||||||
|
|
||||||
raw_json = bst.save_raw(raw_format="json")
|
|
||||||
pretty = json.dumps(json.loads(raw_json), indent=2) + "\n\n"
|
|
||||||
bst.load_model(bytearray(pretty, encoding="ascii"))
|
|
||||||
|
|
||||||
if parameters.get("multi_strategy", None) != "multi_output_tree":
|
|
||||||
# old binary model is not supported.
|
|
||||||
old_from_json = from_jraw.save_raw(raw_format="deprecated")
|
|
||||||
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
|
|
||||||
|
|
||||||
assert old_from_json == old_from_ubj
|
|
||||||
|
|
||||||
rng = np.random.default_rng()
|
|
||||||
X = rng.random(size=from_jraw.num_features() * 10).reshape(
|
|
||||||
(10, from_jraw.num_features())
|
|
||||||
)
|
|
||||||
predt_from_jraw = from_jraw.predict(xgb.DMatrix(X))
|
|
||||||
predt_from_bst = bst.predict(xgb.DMatrix(X))
|
|
||||||
np.testing.assert_allclose(predt_from_jraw, predt_from_bst)
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("ext", ["json", "ubj"])
|
|
||||||
def test_model_json_io(self, ext: str) -> None:
|
|
||||||
parameters = {"booster": "gbtree", "tree_method": "hist"}
|
|
||||||
self.run_model_json_io(parameters, ext)
|
|
||||||
parameters = {
|
|
||||||
"booster": "gbtree",
|
|
||||||
"tree_method": "hist",
|
|
||||||
"multi_strategy": "multi_output_tree",
|
|
||||||
"objective": "multi:softmax",
|
|
||||||
}
|
|
||||||
self.run_model_json_io(parameters, ext)
|
|
||||||
parameters = {"booster": "gblinear"}
|
|
||||||
self.run_model_json_io(parameters, ext)
|
|
||||||
parameters = {"booster": "dart", "tree_method": "hist"}
|
|
||||||
self.run_model_json_io(parameters, ext)
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_json_schema())
|
|
||||||
def test_json_io_schema(self):
|
|
||||||
import jsonschema
|
|
||||||
model_path = 'test_json_schema.json'
|
|
||||||
path = os.path.dirname(
|
|
||||||
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
||||||
doc = os.path.join(path, 'doc', 'model.schema')
|
|
||||||
with open(doc, 'r') as fd:
|
|
||||||
schema = json.load(fd)
|
|
||||||
parameters = {'tree_method': 'hist', 'booster': 'gbtree'}
|
|
||||||
jsonschema.validate(instance=json_model(model_path, parameters),
|
|
||||||
schema=schema)
|
|
||||||
os.remove(model_path)
|
|
||||||
|
|
||||||
parameters = {'tree_method': 'hist', 'booster': 'dart'}
|
|
||||||
jsonschema.validate(instance=json_model(model_path, parameters),
|
|
||||||
schema=schema)
|
|
||||||
os.remove(model_path)
|
|
||||||
|
|
||||||
try:
|
|
||||||
dtrain, _ = tm.load_agaricus(__file__)
|
|
||||||
xgb.train({'objective': 'foo'}, dtrain, num_boost_round=1)
|
|
||||||
except ValueError as e:
|
|
||||||
e_str = str(e)
|
|
||||||
beg = e_str.find('Objective candidate')
|
|
||||||
end = e_str.find('Stack trace')
|
|
||||||
e_str = e_str[beg: end]
|
|
||||||
e_str = e_str.strip()
|
|
||||||
splited = e_str.splitlines()
|
|
||||||
objectives = [s.split(': ')[1] for s in splited]
|
|
||||||
j_objectives = schema['properties']['learner']['properties'][
|
|
||||||
'objective']['oneOf']
|
|
||||||
objectives_from_schema = set()
|
|
||||||
for j_obj in j_objectives:
|
|
||||||
objectives_from_schema.add(
|
|
||||||
j_obj['properties']['name']['const'])
|
|
||||||
objectives = set(objectives)
|
|
||||||
assert objectives == objectives_from_schema
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_json_schema())
|
@pytest.mark.skipif(**tm.no_json_schema())
|
||||||
def test_json_dump_schema(self):
|
def test_json_dump_schema(self):
|
||||||
import jsonschema
|
import jsonschema
|
||||||
@ -470,29 +307,6 @@ class TestModels:
|
|||||||
for d in text_dump:
|
for d in text_dump:
|
||||||
assert d.find(r"feature \"2\"") != -1
|
assert d.find(r"feature \"2\"") != -1
|
||||||
|
|
||||||
def test_categorical_model_io(self):
|
|
||||||
X, y = tm.make_categorical(256, 16, 71, False)
|
|
||||||
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
||||||
booster = xgb.train({"tree_method": "approx"}, Xy, num_boost_round=16)
|
|
||||||
predt_0 = booster.predict(Xy)
|
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tempdir:
|
|
||||||
path = os.path.join(tempdir, "model.binary")
|
|
||||||
with pytest.raises(ValueError, match=r".*JSON/UBJSON.*"):
|
|
||||||
booster.save_model(path)
|
|
||||||
|
|
||||||
path = os.path.join(tempdir, "model.json")
|
|
||||||
booster.save_model(path)
|
|
||||||
booster = xgb.Booster(model_file=path)
|
|
||||||
predt_1 = booster.predict(Xy)
|
|
||||||
np.testing.assert_allclose(predt_0, predt_1)
|
|
||||||
|
|
||||||
path = os.path.join(tempdir, "model.ubj")
|
|
||||||
booster.save_model(path)
|
|
||||||
booster = xgb.Booster(model_file=path)
|
|
||||||
predt_1 = booster.predict(Xy)
|
|
||||||
np.testing.assert_allclose(predt_0, predt_1)
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_sklearn())
|
@pytest.mark.skipif(**tm.no_sklearn())
|
||||||
def test_attributes(self):
|
def test_attributes(self):
|
||||||
from sklearn.datasets import load_iris
|
from sklearn.datasets import load_iris
|
||||||
|
|||||||
@ -278,14 +278,18 @@ class TestCallbacks:
|
|||||||
|
|
||||||
dtrain, dtest = tm.load_agaricus(__file__)
|
dtrain, dtest = tm.load_agaricus(__file__)
|
||||||
|
|
||||||
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
watchlist = [(dtest, "eval"), (dtrain, "train")]
|
||||||
num_round = 4
|
num_round = 4
|
||||||
|
|
||||||
# learning_rates as a list
|
# learning_rates as a list
|
||||||
# init eta with 0 to check whether learning_rates work
|
# init eta with 0 to check whether learning_rates work
|
||||||
param = {'max_depth': 2, 'eta': 0, 'verbosity': 0,
|
param = {
|
||||||
'objective': 'binary:logistic', 'eval_metric': 'error',
|
"max_depth": 2,
|
||||||
'tree_method': tree_method}
|
"eta": 0,
|
||||||
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": "error",
|
||||||
|
"tree_method": tree_method,
|
||||||
|
}
|
||||||
evals_result = {}
|
evals_result = {}
|
||||||
bst = xgb.train(
|
bst = xgb.train(
|
||||||
param,
|
param,
|
||||||
@ -295,15 +299,19 @@ class TestCallbacks:
|
|||||||
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
|
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
|
||||||
evals_result=evals_result,
|
evals_result=evals_result,
|
||||||
)
|
)
|
||||||
eval_errors_0 = list(map(float, evals_result['eval']['error']))
|
eval_errors_0 = list(map(float, evals_result["eval"]["error"]))
|
||||||
assert isinstance(bst, xgb.core.Booster)
|
assert isinstance(bst, xgb.core.Booster)
|
||||||
# validation error should decrease, if eta > 0
|
# validation error should decrease, if eta > 0
|
||||||
assert eval_errors_0[0] > eval_errors_0[-1]
|
assert eval_errors_0[0] > eval_errors_0[-1]
|
||||||
|
|
||||||
# init learning_rate with 0 to check whether learning_rates work
|
# init learning_rate with 0 to check whether learning_rates work
|
||||||
param = {'max_depth': 2, 'learning_rate': 0, 'verbosity': 0,
|
param = {
|
||||||
'objective': 'binary:logistic', 'eval_metric': 'error',
|
"max_depth": 2,
|
||||||
'tree_method': tree_method}
|
"learning_rate": 0,
|
||||||
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": "error",
|
||||||
|
"tree_method": tree_method,
|
||||||
|
}
|
||||||
evals_result = {}
|
evals_result = {}
|
||||||
|
|
||||||
bst = xgb.train(
|
bst = xgb.train(
|
||||||
@ -314,15 +322,17 @@ class TestCallbacks:
|
|||||||
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
|
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
|
||||||
evals_result=evals_result,
|
evals_result=evals_result,
|
||||||
)
|
)
|
||||||
eval_errors_1 = list(map(float, evals_result['eval']['error']))
|
eval_errors_1 = list(map(float, evals_result["eval"]["error"]))
|
||||||
assert isinstance(bst, xgb.core.Booster)
|
assert isinstance(bst, xgb.core.Booster)
|
||||||
# validation error should decrease, if learning_rate > 0
|
# validation error should decrease, if learning_rate > 0
|
||||||
assert eval_errors_1[0] > eval_errors_1[-1]
|
assert eval_errors_1[0] > eval_errors_1[-1]
|
||||||
|
|
||||||
# check if learning_rates override default value of eta/learning_rate
|
# check if learning_rates override default value of eta/learning_rate
|
||||||
param = {
|
param = {
|
||||||
'max_depth': 2, 'verbosity': 0, 'objective': 'binary:logistic',
|
"max_depth": 2,
|
||||||
'eval_metric': 'error', 'tree_method': tree_method
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": "error",
|
||||||
|
"tree_method": tree_method,
|
||||||
}
|
}
|
||||||
evals_result = {}
|
evals_result = {}
|
||||||
bst = xgb.train(
|
bst = xgb.train(
|
||||||
|
|||||||
@ -12,6 +12,7 @@ def test_global_config_verbosity(verbosity_level):
|
|||||||
return xgb.get_config()["verbosity"]
|
return xgb.get_config()["verbosity"]
|
||||||
|
|
||||||
old_verbosity = get_current_verbosity()
|
old_verbosity = get_current_verbosity()
|
||||||
|
assert old_verbosity == 1
|
||||||
with xgb.config_context(verbosity=verbosity_level):
|
with xgb.config_context(verbosity=verbosity_level):
|
||||||
new_verbosity = get_current_verbosity()
|
new_verbosity = get_current_verbosity()
|
||||||
assert new_verbosity == verbosity_level
|
assert new_verbosity == verbosity_level
|
||||||
@ -30,7 +31,10 @@ def test_global_config_use_rmm(use_rmm):
|
|||||||
assert old_use_rmm_flag == get_current_use_rmm_flag()
|
assert old_use_rmm_flag == get_current_use_rmm_flag()
|
||||||
|
|
||||||
|
|
||||||
def test_nested_config():
|
def test_nested_config() -> None:
|
||||||
|
verbosity = xgb.get_config()["verbosity"]
|
||||||
|
assert verbosity == 1
|
||||||
|
|
||||||
with xgb.config_context(verbosity=3):
|
with xgb.config_context(verbosity=3):
|
||||||
assert xgb.get_config()["verbosity"] == 3
|
assert xgb.get_config()["verbosity"] == 3
|
||||||
with xgb.config_context(verbosity=2):
|
with xgb.config_context(verbosity=2):
|
||||||
@ -45,13 +49,15 @@ def test_nested_config():
|
|||||||
with xgb.config_context(verbosity=None):
|
with xgb.config_context(verbosity=None):
|
||||||
assert xgb.get_config()["verbosity"] == 3 # None has no effect
|
assert xgb.get_config()["verbosity"] == 3 # None has no effect
|
||||||
|
|
||||||
verbosity = xgb.get_config()["verbosity"]
|
|
||||||
xgb.set_config(verbosity=2)
|
xgb.set_config(verbosity=2)
|
||||||
assert xgb.get_config()["verbosity"] == 2
|
assert xgb.get_config()["verbosity"] == 2
|
||||||
with xgb.config_context(verbosity=3):
|
with xgb.config_context(verbosity=3):
|
||||||
assert xgb.get_config()["verbosity"] == 3
|
assert xgb.get_config()["verbosity"] == 3
|
||||||
xgb.set_config(verbosity=verbosity) # reset
|
xgb.set_config(verbosity=verbosity) # reset
|
||||||
|
|
||||||
|
verbosity = xgb.get_config()["verbosity"]
|
||||||
|
assert verbosity == 1
|
||||||
|
|
||||||
|
|
||||||
def test_thread_safty():
|
def test_thread_safty():
|
||||||
n_threads = multiprocessing.cpu_count()
|
n_threads = multiprocessing.cpu_count()
|
||||||
|
|||||||
@ -1,6 +1,7 @@
|
|||||||
import csv
|
import csv
|
||||||
import os
|
import os
|
||||||
import tempfile
|
import tempfile
|
||||||
|
import warnings
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
@ -24,20 +25,18 @@ class TestDMatrix:
|
|||||||
with pytest.warns(UserWarning):
|
with pytest.warns(UserWarning):
|
||||||
data._warn_unused_missing("uri", 4)
|
data._warn_unused_missing("uri", 4)
|
||||||
|
|
||||||
with pytest.warns(None) as record:
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("error")
|
||||||
data._warn_unused_missing("uri", None)
|
data._warn_unused_missing("uri", None)
|
||||||
data._warn_unused_missing("uri", np.nan)
|
data._warn_unused_missing("uri", np.nan)
|
||||||
|
|
||||||
assert len(record) == 0
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("error")
|
||||||
with pytest.warns(None) as record:
|
|
||||||
x = rng.randn(10, 10)
|
x = rng.randn(10, 10)
|
||||||
y = rng.randn(10)
|
y = rng.randn(10)
|
||||||
|
|
||||||
xgb.DMatrix(x, y, missing=4)
|
xgb.DMatrix(x, y, missing=4)
|
||||||
|
|
||||||
assert len(record) == 0
|
|
||||||
|
|
||||||
def test_dmatrix_numpy_init(self):
|
def test_dmatrix_numpy_init(self):
|
||||||
data = np.random.randn(5, 5)
|
data = np.random.randn(5, 5)
|
||||||
dm = xgb.DMatrix(data)
|
dm = xgb.DMatrix(data)
|
||||||
@ -264,7 +263,7 @@ class TestDMatrix:
|
|||||||
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
||||||
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
||||||
watchlist = [(dtrain, "train")]
|
watchlist = [(dtrain, "train")]
|
||||||
param = {"max_depth": 3, "objective": "binary:logistic", "verbosity": 0}
|
param = {"max_depth": 3, "objective": "binary:logistic"}
|
||||||
bst = xgb.train(param, dtrain, 5, watchlist)
|
bst = xgb.train(param, dtrain, 5, watchlist)
|
||||||
bst.predict(dtrain)
|
bst.predict(dtrain)
|
||||||
|
|
||||||
@ -302,7 +301,7 @@ class TestDMatrix:
|
|||||||
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
dtrain = xgb.DMatrix(x, label=rng.binomial(1, 0.3, nrow))
|
||||||
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
|
||||||
watchlist = [(dtrain, "train")]
|
watchlist = [(dtrain, "train")]
|
||||||
param = {"max_depth": 3, "objective": "binary:logistic", "verbosity": 0}
|
param = {"max_depth": 3, "objective": "binary:logistic"}
|
||||||
bst = xgb.train(param, dtrain, 5, watchlist)
|
bst = xgb.train(param, dtrain, 5, watchlist)
|
||||||
bst.predict(dtrain)
|
bst.predict(dtrain)
|
||||||
|
|
||||||
@ -475,8 +474,10 @@ class TestDMatrixColumnSplit:
|
|||||||
def test_uri(self):
|
def test_uri(self):
|
||||||
def verify_uri():
|
def verify_uri():
|
||||||
rank = xgb.collective.get_rank()
|
rank = xgb.collective.get_rank()
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
filename = os.path.join(tmpdir, f"test_data_{rank}.csv")
|
||||||
|
|
||||||
data = np.random.rand(5, 5)
|
data = np.random.rand(5, 5)
|
||||||
filename = f"test_data_{rank}.csv"
|
|
||||||
with open(filename, mode="w", newline="") as file:
|
with open(filename, mode="w", newline="") as file:
|
||||||
writer = csv.writer(file)
|
writer = csv.writer(file)
|
||||||
for row in data:
|
for row in data:
|
||||||
|
|||||||
@ -67,8 +67,10 @@ class TestEarlyStopping:
|
|||||||
X = digits['data']
|
X = digits['data']
|
||||||
y = digits['target']
|
y = digits['target']
|
||||||
dm = xgb.DMatrix(X, label=y)
|
dm = xgb.DMatrix(X, label=y)
|
||||||
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
|
params = {
|
||||||
'objective': 'binary:logistic', 'eval_metric': 'error'}
|
'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic',
|
||||||
|
'eval_metric': 'error'
|
||||||
|
}
|
||||||
|
|
||||||
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
|
||||||
early_stopping_rounds=10)
|
early_stopping_rounds=10)
|
||||||
|
|||||||
@ -9,29 +9,13 @@ rng = np.random.RandomState(1337)
|
|||||||
|
|
||||||
|
|
||||||
class TestEvalMetrics:
|
class TestEvalMetrics:
|
||||||
xgb_params_01 = {
|
xgb_params_01 = {'nthread': 1, 'eval_metric': 'error'}
|
||||||
'verbosity': 0,
|
|
||||||
'nthread': 1,
|
|
||||||
'eval_metric': 'error'
|
|
||||||
}
|
|
||||||
|
|
||||||
xgb_params_02 = {
|
xgb_params_02 = {'nthread': 1, 'eval_metric': ['error']}
|
||||||
'verbosity': 0,
|
|
||||||
'nthread': 1,
|
|
||||||
'eval_metric': ['error']
|
|
||||||
}
|
|
||||||
|
|
||||||
xgb_params_03 = {
|
xgb_params_03 = {'nthread': 1, 'eval_metric': ['rmse', 'error']}
|
||||||
'verbosity': 0,
|
|
||||||
'nthread': 1,
|
|
||||||
'eval_metric': ['rmse', 'error']
|
|
||||||
}
|
|
||||||
|
|
||||||
xgb_params_04 = {
|
xgb_params_04 = {'nthread': 1, 'eval_metric': ['error', 'rmse']}
|
||||||
'verbosity': 0,
|
|
||||||
'nthread': 1,
|
|
||||||
'eval_metric': ['error', 'rmse']
|
|
||||||
}
|
|
||||||
|
|
||||||
def evalerror_01(self, preds, dtrain):
|
def evalerror_01(self, preds, dtrain):
|
||||||
labels = dtrain.get_label()
|
labels = dtrain.get_label()
|
||||||
|
|||||||
@ -22,8 +22,14 @@ coord_strategy = strategies.fixed_dictionaries({
|
|||||||
|
|
||||||
def train_result(param, dmat, num_rounds):
|
def train_result(param, dmat, num_rounds):
|
||||||
result = {}
|
result = {}
|
||||||
xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False,
|
xgb.train(
|
||||||
evals_result=result)
|
param,
|
||||||
|
dmat,
|
||||||
|
num_rounds,
|
||||||
|
evals=[(dmat, "train")],
|
||||||
|
verbose_eval=False,
|
||||||
|
evals_result=result,
|
||||||
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
406
tests/python/test_model_io.py
Normal file
406
tests/python/test_model_io.py
Normal file
@ -0,0 +1,406 @@
|
|||||||
|
import json
|
||||||
|
import locale
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import xgboost as xgb
|
||||||
|
from xgboost import testing as tm
|
||||||
|
|
||||||
|
|
||||||
|
def json_model(model_path: str, parameters: dict) -> dict:
|
||||||
|
datasets = pytest.importorskip("sklearn.datasets")
|
||||||
|
|
||||||
|
X, y = datasets.make_classification(64, n_features=8, n_classes=3, n_informative=6)
|
||||||
|
if parameters.get("objective", None) == "multi:softmax":
|
||||||
|
parameters["num_class"] = 3
|
||||||
|
|
||||||
|
dm1 = xgb.DMatrix(X, y)
|
||||||
|
|
||||||
|
bst = xgb.train(parameters, dm1)
|
||||||
|
bst.save_model(model_path)
|
||||||
|
|
||||||
|
if model_path.endswith("ubj"):
|
||||||
|
import ubjson
|
||||||
|
|
||||||
|
with open(model_path, "rb") as ubjfd:
|
||||||
|
model = ubjson.load(ubjfd)
|
||||||
|
else:
|
||||||
|
with open(model_path, "r") as fd:
|
||||||
|
model = json.load(fd)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class TestBoosterIO:
|
||||||
|
def run_model_json_io(self, parameters: dict, ext: str) -> None:
|
||||||
|
config = xgb.config.get_config()
|
||||||
|
assert config["verbosity"] == 1
|
||||||
|
|
||||||
|
if ext == "ubj" and tm.no_ubjson()["condition"]:
|
||||||
|
pytest.skip(tm.no_ubjson()["reason"])
|
||||||
|
|
||||||
|
loc = locale.getpreferredencoding(False)
|
||||||
|
model_path = "test_model_json_io." + ext
|
||||||
|
j_model = json_model(model_path, parameters)
|
||||||
|
assert isinstance(j_model["learner"], dict)
|
||||||
|
|
||||||
|
bst = xgb.Booster(model_file=model_path)
|
||||||
|
|
||||||
|
bst.save_model(fname=model_path)
|
||||||
|
if ext == "ubj":
|
||||||
|
import ubjson
|
||||||
|
|
||||||
|
with open(model_path, "rb") as ubjfd:
|
||||||
|
j_model = ubjson.load(ubjfd)
|
||||||
|
else:
|
||||||
|
with open(model_path, "r") as fd:
|
||||||
|
j_model = json.load(fd)
|
||||||
|
|
||||||
|
assert isinstance(j_model["learner"], dict)
|
||||||
|
|
||||||
|
os.remove(model_path)
|
||||||
|
assert locale.getpreferredencoding(False) == loc
|
||||||
|
|
||||||
|
json_raw = bst.save_raw(raw_format="json")
|
||||||
|
from_jraw = xgb.Booster()
|
||||||
|
from_jraw.load_model(json_raw)
|
||||||
|
|
||||||
|
ubj_raw = bst.save_raw(raw_format="ubj")
|
||||||
|
from_ubjraw = xgb.Booster()
|
||||||
|
from_ubjraw.load_model(ubj_raw)
|
||||||
|
|
||||||
|
if parameters.get("multi_strategy", None) != "multi_output_tree":
|
||||||
|
# Old binary model is not supported for vector leaf.
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
|
old_from_json = from_jraw.save_raw(raw_format="deprecated")
|
||||||
|
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
|
||||||
|
|
||||||
|
assert old_from_json == old_from_ubj
|
||||||
|
|
||||||
|
raw_json = bst.save_raw(raw_format="json")
|
||||||
|
pretty = json.dumps(json.loads(raw_json), indent=2) + "\n\n"
|
||||||
|
bst.load_model(bytearray(pretty, encoding="ascii"))
|
||||||
|
|
||||||
|
if parameters.get("multi_strategy", None) != "multi_output_tree":
|
||||||
|
# old binary model is not supported.
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
|
old_from_json = from_jraw.save_raw(raw_format="deprecated")
|
||||||
|
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
|
||||||
|
|
||||||
|
assert old_from_json == old_from_ubj
|
||||||
|
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
X = rng.random(size=from_jraw.num_features() * 10).reshape(
|
||||||
|
(10, from_jraw.num_features())
|
||||||
|
)
|
||||||
|
predt_from_jraw = from_jraw.predict(xgb.DMatrix(X))
|
||||||
|
predt_from_bst = bst.predict(xgb.DMatrix(X))
|
||||||
|
np.testing.assert_allclose(predt_from_jraw, predt_from_bst)
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("ext", ["json", "ubj"])
|
||||||
|
def test_model_json_io(self, ext: str) -> None:
|
||||||
|
parameters = {"booster": "gbtree", "tree_method": "hist"}
|
||||||
|
self.run_model_json_io(parameters, ext)
|
||||||
|
parameters = {
|
||||||
|
"booster": "gbtree",
|
||||||
|
"tree_method": "hist",
|
||||||
|
"multi_strategy": "multi_output_tree",
|
||||||
|
"objective": "multi:softmax",
|
||||||
|
}
|
||||||
|
self.run_model_json_io(parameters, ext)
|
||||||
|
parameters = {"booster": "gblinear"}
|
||||||
|
self.run_model_json_io(parameters, ext)
|
||||||
|
parameters = {"booster": "dart", "tree_method": "hist"}
|
||||||
|
self.run_model_json_io(parameters, ext)
|
||||||
|
|
||||||
|
def test_categorical_model_io(self) -> None:
|
||||||
|
X, y = tm.make_categorical(256, 16, 71, False)
|
||||||
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
||||||
|
booster = xgb.train({"tree_method": "approx"}, Xy, num_boost_round=16)
|
||||||
|
predt_0 = booster.predict(Xy)
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tempdir:
|
||||||
|
path = os.path.join(tempdir, "model.deprecated")
|
||||||
|
with pytest.raises(ValueError, match=r".*JSON/UBJSON.*"):
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
|
booster.save_model(path)
|
||||||
|
|
||||||
|
path = os.path.join(tempdir, "model.json")
|
||||||
|
booster.save_model(path)
|
||||||
|
booster = xgb.Booster(model_file=path)
|
||||||
|
predt_1 = booster.predict(Xy)
|
||||||
|
np.testing.assert_allclose(predt_0, predt_1)
|
||||||
|
|
||||||
|
path = os.path.join(tempdir, "model.ubj")
|
||||||
|
booster.save_model(path)
|
||||||
|
booster = xgb.Booster(model_file=path)
|
||||||
|
predt_1 = booster.predict(Xy)
|
||||||
|
np.testing.assert_allclose(predt_0, predt_1)
|
||||||
|
|
||||||
|
@pytest.mark.skipif(**tm.no_json_schema())
|
||||||
|
def test_json_io_schema(self) -> None:
|
||||||
|
import jsonschema
|
||||||
|
|
||||||
|
model_path = "test_json_schema.json"
|
||||||
|
path = os.path.dirname(
|
||||||
|
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
)
|
||||||
|
doc = os.path.join(path, "doc", "model.schema")
|
||||||
|
with open(doc, "r") as fd:
|
||||||
|
schema = json.load(fd)
|
||||||
|
parameters = {"tree_method": "hist", "booster": "gbtree"}
|
||||||
|
jsonschema.validate(instance=json_model(model_path, parameters), schema=schema)
|
||||||
|
os.remove(model_path)
|
||||||
|
|
||||||
|
parameters = {"tree_method": "hist", "booster": "dart"}
|
||||||
|
jsonschema.validate(instance=json_model(model_path, parameters), schema=schema)
|
||||||
|
os.remove(model_path)
|
||||||
|
|
||||||
|
try:
|
||||||
|
dtrain, _ = tm.load_agaricus(__file__)
|
||||||
|
xgb.train({"objective": "foo"}, dtrain, num_boost_round=1)
|
||||||
|
except ValueError as e:
|
||||||
|
e_str = str(e)
|
||||||
|
beg = e_str.find("Objective candidate")
|
||||||
|
end = e_str.find("Stack trace")
|
||||||
|
e_str = e_str[beg:end]
|
||||||
|
e_str = e_str.strip()
|
||||||
|
splited = e_str.splitlines()
|
||||||
|
objectives = [s.split(": ")[1] for s in splited]
|
||||||
|
j_objectives = schema["properties"]["learner"]["properties"]["objective"][
|
||||||
|
"oneOf"
|
||||||
|
]
|
||||||
|
objectives_from_schema = set()
|
||||||
|
for j_obj in j_objectives:
|
||||||
|
objectives_from_schema.add(j_obj["properties"]["name"]["const"])
|
||||||
|
assert set(objectives) == objectives_from_schema
|
||||||
|
|
||||||
|
def test_model_binary_io(self) -> None:
|
||||||
|
model_path = "test_model_binary_io.deprecated"
|
||||||
|
parameters = {
|
||||||
|
"tree_method": "hist",
|
||||||
|
"booster": "gbtree",
|
||||||
|
"scale_pos_weight": "0.5",
|
||||||
|
}
|
||||||
|
X = np.random.random((10, 3))
|
||||||
|
y = np.random.random((10,))
|
||||||
|
dtrain = xgb.DMatrix(X, y)
|
||||||
|
bst = xgb.train(parameters, dtrain, num_boost_round=2)
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
|
bst.save_model(model_path)
|
||||||
|
bst = xgb.Booster(model_file=model_path)
|
||||||
|
os.remove(model_path)
|
||||||
|
config = json.loads(bst.save_config())
|
||||||
|
assert (
|
||||||
|
float(config["learner"]["objective"]["reg_loss_param"]["scale_pos_weight"])
|
||||||
|
== 0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
buf = bst.save_raw()
|
||||||
|
from_raw = xgb.Booster()
|
||||||
|
from_raw.load_model(buf)
|
||||||
|
|
||||||
|
buf_from_raw = from_raw.save_raw()
|
||||||
|
assert buf == buf_from_raw
|
||||||
|
|
||||||
|
def test_with_pathlib(self) -> None:
|
||||||
|
"""Saving and loading model files from paths."""
|
||||||
|
save_path = Path("model.ubj")
|
||||||
|
|
||||||
|
rng = np.random.default_rng(1994)
|
||||||
|
|
||||||
|
data = rng.normal(size=(100, 2))
|
||||||
|
target = np.array([0, 1] * 50)
|
||||||
|
features = ["Feature1", "Feature2"]
|
||||||
|
|
||||||
|
dm = xgb.DMatrix(data, label=target, feature_names=features)
|
||||||
|
params = {
|
||||||
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": "logloss",
|
||||||
|
"eta": 0.3,
|
||||||
|
"max_depth": 1,
|
||||||
|
}
|
||||||
|
|
||||||
|
bst = xgb.train(params, dm, num_boost_round=1)
|
||||||
|
|
||||||
|
# save, assert exists
|
||||||
|
bst.save_model(save_path)
|
||||||
|
assert save_path.exists()
|
||||||
|
|
||||||
|
def dump_assertions(dump: List[str]) -> None:
|
||||||
|
"""Assertions for the expected dump from Booster"""
|
||||||
|
assert len(dump) == 1, "Exepcted only 1 tree to be dumped."
|
||||||
|
assert (
|
||||||
|
len(dump[0].splitlines()) == 3
|
||||||
|
), "Expected 1 root and 2 leaves - 3 lines."
|
||||||
|
|
||||||
|
# load the model again using Path
|
||||||
|
bst2 = xgb.Booster(model_file=save_path)
|
||||||
|
dump2 = bst2.get_dump()
|
||||||
|
dump_assertions(dump2)
|
||||||
|
|
||||||
|
# load again using load_model
|
||||||
|
bst3 = xgb.Booster()
|
||||||
|
bst3.load_model(save_path)
|
||||||
|
dump3 = bst3.get_dump()
|
||||||
|
dump_assertions(dump3)
|
||||||
|
|
||||||
|
# remove file
|
||||||
|
Path.unlink(save_path)
|
||||||
|
|
||||||
|
|
||||||
|
def save_load_model(model_path: str) -> None:
|
||||||
|
from sklearn.datasets import load_digits
|
||||||
|
from sklearn.model_selection import KFold
|
||||||
|
|
||||||
|
rng = np.random.RandomState(1994)
|
||||||
|
|
||||||
|
digits = load_digits(n_class=2)
|
||||||
|
y = digits["target"]
|
||||||
|
X = digits["data"]
|
||||||
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
||||||
|
for train_index, test_index in kf.split(X, y):
|
||||||
|
xgb_model = xgb.XGBClassifier().fit(X[train_index], y[train_index])
|
||||||
|
xgb_model.save_model(model_path)
|
||||||
|
|
||||||
|
xgb_model = xgb.XGBClassifier()
|
||||||
|
xgb_model.load_model(model_path)
|
||||||
|
|
||||||
|
assert isinstance(xgb_model.classes_, np.ndarray)
|
||||||
|
np.testing.assert_equal(xgb_model.classes_, np.array([0, 1]))
|
||||||
|
assert isinstance(xgb_model._Booster, xgb.Booster)
|
||||||
|
|
||||||
|
preds = xgb_model.predict(X[test_index])
|
||||||
|
labels = y[test_index]
|
||||||
|
err = sum(
|
||||||
|
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
|
||||||
|
) / float(len(preds))
|
||||||
|
assert err < 0.1
|
||||||
|
assert xgb_model.get_booster().attr("scikit_learn") is None
|
||||||
|
|
||||||
|
# test native booster
|
||||||
|
preds = xgb_model.predict(X[test_index], output_margin=True)
|
||||||
|
booster = xgb.Booster(model_file=model_path)
|
||||||
|
predt_1 = booster.predict(xgb.DMatrix(X[test_index]), output_margin=True)
|
||||||
|
assert np.allclose(preds, predt_1)
|
||||||
|
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
xgb_model = xgb.XGBModel()
|
||||||
|
xgb_model.load_model(model_path)
|
||||||
|
|
||||||
|
clf = xgb.XGBClassifier(booster="gblinear", early_stopping_rounds=1)
|
||||||
|
clf.fit(X, y, eval_set=[(X, y)])
|
||||||
|
best_iteration = clf.best_iteration
|
||||||
|
best_score = clf.best_score
|
||||||
|
predt_0 = clf.predict(X)
|
||||||
|
clf.save_model(model_path)
|
||||||
|
clf.load_model(model_path)
|
||||||
|
assert clf.booster == "gblinear"
|
||||||
|
predt_1 = clf.predict(X)
|
||||||
|
np.testing.assert_allclose(predt_0, predt_1)
|
||||||
|
assert clf.best_iteration == best_iteration
|
||||||
|
assert clf.best_score == best_score
|
||||||
|
|
||||||
|
clfpkl = pickle.dumps(clf)
|
||||||
|
clf = pickle.loads(clfpkl)
|
||||||
|
predt_2 = clf.predict(X)
|
||||||
|
np.testing.assert_allclose(predt_0, predt_2)
|
||||||
|
assert clf.best_iteration == best_iteration
|
||||||
|
assert clf.best_score == best_score
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(**tm.no_sklearn())
|
||||||
|
def test_sklearn_model() -> None:
|
||||||
|
from sklearn.datasets import load_digits
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tempdir:
|
||||||
|
model_path = os.path.join(tempdir, "digits.deprecated")
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
|
save_load_model(model_path)
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tempdir:
|
||||||
|
model_path = os.path.join(tempdir, "digits.model.json")
|
||||||
|
save_load_model(model_path)
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tempdir:
|
||||||
|
model_path = os.path.join(tempdir, "digits.model.ubj")
|
||||||
|
digits = load_digits(n_class=2)
|
||||||
|
y = digits["target"]
|
||||||
|
X = digits["data"]
|
||||||
|
booster = xgb.train(
|
||||||
|
{"tree_method": "hist", "objective": "binary:logistic"},
|
||||||
|
dtrain=xgb.DMatrix(X, y),
|
||||||
|
num_boost_round=4,
|
||||||
|
)
|
||||||
|
predt_0 = booster.predict(xgb.DMatrix(X))
|
||||||
|
booster.save_model(model_path)
|
||||||
|
cls = xgb.XGBClassifier()
|
||||||
|
cls.load_model(model_path)
|
||||||
|
|
||||||
|
proba = cls.predict_proba(X)
|
||||||
|
assert proba.shape[0] == X.shape[0]
|
||||||
|
assert proba.shape[1] == 2 # binary
|
||||||
|
|
||||||
|
predt_1 = cls.predict_proba(X)[:, 1]
|
||||||
|
assert np.allclose(predt_0, predt_1)
|
||||||
|
|
||||||
|
cls = xgb.XGBModel()
|
||||||
|
cls.load_model(model_path)
|
||||||
|
predt_1 = cls.predict(X)
|
||||||
|
assert np.allclose(predt_0, predt_1)
|
||||||
|
|
||||||
|
# mclass
|
||||||
|
X, y = load_digits(n_class=10, return_X_y=True)
|
||||||
|
# small test_size to force early stop
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, y, test_size=0.01, random_state=1
|
||||||
|
)
|
||||||
|
clf = xgb.XGBClassifier(
|
||||||
|
n_estimators=64, tree_method="hist", early_stopping_rounds=2
|
||||||
|
)
|
||||||
|
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
||||||
|
score = clf.best_score
|
||||||
|
clf.save_model(model_path)
|
||||||
|
|
||||||
|
clf = xgb.XGBClassifier()
|
||||||
|
clf.load_model(model_path)
|
||||||
|
assert clf.classes_.size == 10
|
||||||
|
assert clf.objective == "multi:softprob"
|
||||||
|
|
||||||
|
np.testing.assert_equal(clf.classes_, np.arange(10))
|
||||||
|
assert clf.n_classes_ == 10
|
||||||
|
|
||||||
|
assert clf.best_iteration == 27
|
||||||
|
assert clf.best_score == score
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(**tm.no_sklearn())
|
||||||
|
def test_with_sklearn_obj_metric() -> None:
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
|
||||||
|
X, y = tm.datasets.make_regression()
|
||||||
|
reg = xgb.XGBRegressor(objective=tm.ls_obj, eval_metric=mean_squared_error)
|
||||||
|
reg.fit(X, y)
|
||||||
|
|
||||||
|
pkl = pickle.dumps(reg)
|
||||||
|
reg_1 = pickle.loads(pkl)
|
||||||
|
assert callable(reg_1.objective)
|
||||||
|
assert callable(reg_1.eval_metric)
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
path = os.path.join(tmpdir, "model.json")
|
||||||
|
reg.save_model(path)
|
||||||
|
|
||||||
|
reg_2 = xgb.XGBRegressor()
|
||||||
|
reg_2.load_model(path)
|
||||||
|
|
||||||
|
assert not callable(reg_2.objective)
|
||||||
|
assert not callable(reg_2.eval_metric)
|
||||||
|
assert reg_2.eval_metric is None
|
||||||
@ -1,13 +1,10 @@
|
|||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import pickle
|
import pickle
|
||||||
import tempfile
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
|
||||||
|
|
||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
from xgboost import testing as tm
|
|
||||||
|
|
||||||
kRows = 100
|
kRows = 100
|
||||||
kCols = 10
|
kCols = 10
|
||||||
@ -64,27 +61,3 @@ class TestPickling:
|
|||||||
params = {"nthread": 8, "tree_method": "exact", "subsample": 0.5}
|
params = {"nthread": 8, "tree_method": "exact", "subsample": 0.5}
|
||||||
config = self.run_model_pickling(params)
|
config = self.run_model_pickling(params)
|
||||||
check(config)
|
check(config)
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_sklearn())
|
|
||||||
def test_with_sklearn_obj_metric(self) -> None:
|
|
||||||
from sklearn.metrics import mean_squared_error
|
|
||||||
|
|
||||||
X, y = tm.datasets.make_regression()
|
|
||||||
reg = xgb.XGBRegressor(objective=tm.ls_obj, eval_metric=mean_squared_error)
|
|
||||||
reg.fit(X, y)
|
|
||||||
|
|
||||||
pkl = pickle.dumps(reg)
|
|
||||||
reg_1 = pickle.loads(pkl)
|
|
||||||
assert callable(reg_1.objective)
|
|
||||||
assert callable(reg_1.eval_metric)
|
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
|
||||||
path = os.path.join(tmpdir, "model.json")
|
|
||||||
reg.save_model(path)
|
|
||||||
|
|
||||||
reg_2 = xgb.XGBRegressor()
|
|
||||||
reg_2.load_model(path)
|
|
||||||
|
|
||||||
assert not callable(reg_2.objective)
|
|
||||||
assert not callable(reg_2.eval_metric)
|
|
||||||
assert reg_2.eval_metric is None
|
|
||||||
|
|||||||
@ -49,7 +49,7 @@ class TestSHAP:
|
|||||||
|
|
||||||
def fn(max_depth: int, num_rounds: int) -> None:
|
def fn(max_depth: int, num_rounds: int) -> None:
|
||||||
# train
|
# train
|
||||||
params = {"max_depth": max_depth, "eta": 1, "verbosity": 0}
|
params = {"max_depth": max_depth, "eta": 1}
|
||||||
bst = xgb.train(params, dtrain, num_boost_round=num_rounds)
|
bst = xgb.train(params, dtrain, num_boost_round=num_rounds)
|
||||||
|
|
||||||
# predict
|
# predict
|
||||||
|
|||||||
@ -117,7 +117,6 @@ class TestTreeMethod:
|
|||||||
ag_param = {'max_depth': 2,
|
ag_param = {'max_depth': 2,
|
||||||
'tree_method': 'hist',
|
'tree_method': 'hist',
|
||||||
'eta': 1,
|
'eta': 1,
|
||||||
'verbosity': 0,
|
|
||||||
'objective': 'binary:logistic',
|
'objective': 'binary:logistic',
|
||||||
'eval_metric': 'auc'}
|
'eval_metric': 'auc'}
|
||||||
hist_res = {}
|
hist_res = {}
|
||||||
@ -340,6 +339,7 @@ class TestTreeMethod:
|
|||||||
|
|
||||||
assert get_score(config_0) == get_score(config_1)
|
assert get_score(config_0) == get_score(config_1)
|
||||||
|
|
||||||
|
with pytest.warns(Warning, match="Model format is default to UBJSON"):
|
||||||
raw_booster = booster_1.save_raw(raw_format="deprecated")
|
raw_booster = booster_1.save_raw(raw_format="deprecated")
|
||||||
booster_2 = xgb.Booster(model_file=raw_booster)
|
booster_2 = xgb.Booster(model_file=raw_booster)
|
||||||
config_2 = json.loads(booster_2.save_config())
|
config_2 = json.loads(booster_2.save_config())
|
||||||
|
|||||||
@ -341,7 +341,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"eval_metric": "error",
|
"eval_metric": "error",
|
||||||
}
|
}
|
||||||
@ -372,7 +371,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"eval_metric": "auc",
|
"eval_metric": "auc",
|
||||||
}
|
}
|
||||||
@ -383,7 +381,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"eval_metric": ["auc"],
|
"eval_metric": ["auc"],
|
||||||
}
|
}
|
||||||
@ -394,7 +391,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"eval_metric": ["auc"],
|
"eval_metric": ["auc"],
|
||||||
}
|
}
|
||||||
@ -413,7 +409,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
}
|
}
|
||||||
cv = xgb.cv(
|
cv = xgb.cv(
|
||||||
@ -424,7 +419,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
}
|
}
|
||||||
cv = xgb.cv(
|
cv = xgb.cv(
|
||||||
@ -435,7 +429,6 @@ class TestPandas:
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 2,
|
"max_depth": 2,
|
||||||
"eta": 1,
|
"eta": 1,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"eval_metric": ["auc"],
|
"eval_metric": ["auc"],
|
||||||
}
|
}
|
||||||
|
|||||||
@ -678,7 +678,6 @@ def test_split_value_histograms():
|
|||||||
params = {
|
params = {
|
||||||
"max_depth": 6,
|
"max_depth": 6,
|
||||||
"eta": 0.01,
|
"eta": 0.01,
|
||||||
"verbosity": 0,
|
|
||||||
"objective": "binary:logistic",
|
"objective": "binary:logistic",
|
||||||
"base_score": 0.5,
|
"base_score": 0.5,
|
||||||
}
|
}
|
||||||
@ -897,128 +896,6 @@ def test_validation_weights():
|
|||||||
run_validation_weights(xgb.XGBClassifier)
|
run_validation_weights(xgb.XGBClassifier)
|
||||||
|
|
||||||
|
|
||||||
def save_load_model(model_path):
|
|
||||||
from sklearn.datasets import load_digits
|
|
||||||
from sklearn.model_selection import KFold
|
|
||||||
|
|
||||||
digits = load_digits(n_class=2)
|
|
||||||
y = digits['target']
|
|
||||||
X = digits['data']
|
|
||||||
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
||||||
for train_index, test_index in kf.split(X, y):
|
|
||||||
xgb_model = xgb.XGBClassifier().fit(X[train_index], y[train_index])
|
|
||||||
xgb_model.save_model(model_path)
|
|
||||||
|
|
||||||
xgb_model = xgb.XGBClassifier()
|
|
||||||
xgb_model.load_model(model_path)
|
|
||||||
|
|
||||||
assert isinstance(xgb_model.classes_, np.ndarray)
|
|
||||||
np.testing.assert_equal(xgb_model.classes_, np.array([0, 1]))
|
|
||||||
assert isinstance(xgb_model._Booster, xgb.Booster)
|
|
||||||
|
|
||||||
preds = xgb_model.predict(X[test_index])
|
|
||||||
labels = y[test_index]
|
|
||||||
err = sum(1 for i in range(len(preds))
|
|
||||||
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
|
||||||
assert err < 0.1
|
|
||||||
assert xgb_model.get_booster().attr('scikit_learn') is None
|
|
||||||
|
|
||||||
# test native booster
|
|
||||||
preds = xgb_model.predict(X[test_index], output_margin=True)
|
|
||||||
booster = xgb.Booster(model_file=model_path)
|
|
||||||
predt_1 = booster.predict(xgb.DMatrix(X[test_index]),
|
|
||||||
output_margin=True)
|
|
||||||
assert np.allclose(preds, predt_1)
|
|
||||||
|
|
||||||
with pytest.raises(TypeError):
|
|
||||||
xgb_model = xgb.XGBModel()
|
|
||||||
xgb_model.load_model(model_path)
|
|
||||||
|
|
||||||
clf = xgb.XGBClassifier(booster="gblinear", early_stopping_rounds=1)
|
|
||||||
clf.fit(X, y, eval_set=[(X, y)])
|
|
||||||
best_iteration = clf.best_iteration
|
|
||||||
best_score = clf.best_score
|
|
||||||
predt_0 = clf.predict(X)
|
|
||||||
clf.save_model(model_path)
|
|
||||||
clf.load_model(model_path)
|
|
||||||
assert clf.booster == "gblinear"
|
|
||||||
predt_1 = clf.predict(X)
|
|
||||||
np.testing.assert_allclose(predt_0, predt_1)
|
|
||||||
assert clf.best_iteration == best_iteration
|
|
||||||
assert clf.best_score == best_score
|
|
||||||
|
|
||||||
clfpkl = pickle.dumps(clf)
|
|
||||||
clf = pickle.loads(clfpkl)
|
|
||||||
predt_2 = clf.predict(X)
|
|
||||||
np.testing.assert_allclose(predt_0, predt_2)
|
|
||||||
assert clf.best_iteration == best_iteration
|
|
||||||
assert clf.best_score == best_score
|
|
||||||
|
|
||||||
|
|
||||||
def test_save_load_model():
|
|
||||||
with tempfile.TemporaryDirectory() as tempdir:
|
|
||||||
model_path = os.path.join(tempdir, "digits.model")
|
|
||||||
save_load_model(model_path)
|
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tempdir:
|
|
||||||
model_path = os.path.join(tempdir, "digits.model.json")
|
|
||||||
save_load_model(model_path)
|
|
||||||
|
|
||||||
from sklearn.datasets import load_digits
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
|
|
||||||
with tempfile.TemporaryDirectory() as tempdir:
|
|
||||||
model_path = os.path.join(tempdir, "digits.model.ubj")
|
|
||||||
digits = load_digits(n_class=2)
|
|
||||||
y = digits["target"]
|
|
||||||
X = digits["data"]
|
|
||||||
booster = xgb.train(
|
|
||||||
{"tree_method": "hist", "objective": "binary:logistic"},
|
|
||||||
dtrain=xgb.DMatrix(X, y),
|
|
||||||
num_boost_round=4,
|
|
||||||
)
|
|
||||||
predt_0 = booster.predict(xgb.DMatrix(X))
|
|
||||||
booster.save_model(model_path)
|
|
||||||
cls = xgb.XGBClassifier()
|
|
||||||
cls.load_model(model_path)
|
|
||||||
|
|
||||||
proba = cls.predict_proba(X)
|
|
||||||
assert proba.shape[0] == X.shape[0]
|
|
||||||
assert proba.shape[1] == 2 # binary
|
|
||||||
|
|
||||||
predt_1 = cls.predict_proba(X)[:, 1]
|
|
||||||
assert np.allclose(predt_0, predt_1)
|
|
||||||
|
|
||||||
cls = xgb.XGBModel()
|
|
||||||
cls.load_model(model_path)
|
|
||||||
predt_1 = cls.predict(X)
|
|
||||||
assert np.allclose(predt_0, predt_1)
|
|
||||||
|
|
||||||
# mclass
|
|
||||||
X, y = load_digits(n_class=10, return_X_y=True)
|
|
||||||
# small test_size to force early stop
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(
|
|
||||||
X, y, test_size=0.01, random_state=1
|
|
||||||
)
|
|
||||||
clf = xgb.XGBClassifier(
|
|
||||||
n_estimators=64, tree_method="hist", early_stopping_rounds=2
|
|
||||||
)
|
|
||||||
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
|
||||||
score = clf.best_score
|
|
||||||
clf.save_model(model_path)
|
|
||||||
|
|
||||||
clf = xgb.XGBClassifier()
|
|
||||||
clf.load_model(model_path)
|
|
||||||
assert clf.classes_.size == 10
|
|
||||||
assert clf.objective == "multi:softprob"
|
|
||||||
|
|
||||||
np.testing.assert_equal(clf.classes_, np.arange(10))
|
|
||||||
assert clf.n_classes_ == 10
|
|
||||||
|
|
||||||
assert clf.best_iteration == 27
|
|
||||||
assert clf.best_score == score
|
|
||||||
|
|
||||||
|
|
||||||
def test_RFECV():
|
def test_RFECV():
|
||||||
from sklearn.datasets import load_breast_cancer, load_diabetes, load_iris
|
from sklearn.datasets import load_breast_cancer, load_diabetes, load_iris
|
||||||
from sklearn.feature_selection import RFECV
|
from sklearn.feature_selection import RFECV
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user