fix DeprecationWarning on sklearn.cross_validation (#2075)
* fix DeprecationWarning on sklearn.cross_validation * fix syntax * fix kfold n_split issue * fix mistype * fix n_splits multiple value issue * split should pass a iterable * use np.arange instead of xrange, py3 compatibility
This commit is contained in:
parent
d581a3d0e7
commit
301540f1d9
@ -8,6 +8,9 @@ import pickle
|
||||
import xgboost as xgb
|
||||
|
||||
import numpy as np
|
||||
try:
|
||||
from sklearn.model_selection import KFold, train_test_split
|
||||
except:
|
||||
from sklearn.cross_validation import KFold, train_test_split
|
||||
from sklearn.metrics import confusion_matrix, mean_squared_error
|
||||
from sklearn.grid_search import GridSearchCV
|
||||
|
||||
@ -11,6 +11,9 @@ class TestEarlyStopping(unittest.TestCase):
|
||||
def test_early_stopping_nonparallel(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
try:
|
||||
from sklearn.model_selection import train_test_split
|
||||
except:
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
digits = load_digits(2)
|
||||
|
||||
@ -57,6 +57,9 @@ class TestEvalMetrics(unittest.TestCase):
|
||||
|
||||
def test_eval_metrics(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
try:
|
||||
from sklearn.model_selection import train_test_split
|
||||
except:
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.datasets import load_digits
|
||||
|
||||
|
||||
@ -10,6 +10,9 @@ class TestFastHist(unittest.TestCase):
|
||||
def test_fast_hist(self):
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
try:
|
||||
from sklearn.model_selection import train_test_split
|
||||
except:
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
digits = load_digits(2)
|
||||
|
||||
@ -9,12 +9,20 @@ rng = np.random.RandomState(1994)
|
||||
def test_binary_classification():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_digits
|
||||
try:
|
||||
from sklearn.model_selection import KFold
|
||||
except:
|
||||
from sklearn.cross_validation import KFold
|
||||
|
||||
digits = load_digits(2)
|
||||
y = digits['target']
|
||||
X = digits['data']
|
||||
try:
|
||||
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
||||
except TypeError: # sklearn.model_selection.KFold uses n_split
|
||||
kf = KFold(
|
||||
n_splits=2, shuffle=True, random_state=rng
|
||||
).split(np.arange(y.shape[0]))
|
||||
for train_index, test_index in kf:
|
||||
xgb_model = xgb.XGBClassifier().fit(X[train_index], y[train_index])
|
||||
preds = xgb_model.predict(X[test_index])
|
||||
@ -27,7 +35,10 @@ def test_binary_classification():
|
||||
def test_multiclass_classification():
|
||||
tm._skip_if_no_sklearn()
|
||||
from sklearn.datasets import load_iris
|
||||
try:
|
||||
from sklearn.cross_validation import KFold
|
||||
except:
|
||||
from sklearn.model_selection import KFold
|
||||
|
||||
def check_pred(preds, labels):
|
||||
err = sum(1 for i in range(len(preds))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user