first version that reproduce binary classification demo

This commit is contained in:
tqchen 2014-08-16 15:44:35 -07:00
parent c4acb4fe01
commit 2c969ecf14
11 changed files with 286 additions and 20 deletions

View File

@ -3,15 +3,15 @@ export CXX = clang++
export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas export CFLAGS = -Wall -O3 -msse2 -Wno-unknown-pragmas
# specify tensor path # specify tensor path
BIN = xgunity.exe BIN = xgboost
OBJ = io.o OBJ = io.o
.PHONY: clean all .PHONY: clean all
all: $(BIN) $(OBJ) all: $(BIN) $(OBJ)
export LDFLAGS= -pthread -lm export LDFLAGS= -pthread -lm
xgunity.exe: src/xgunity.cpp xgboost: src/xgboost_main.cpp io.o src/data.h src/tree/*.h src/tree/*.hpp src/gbm/*.h src/gbm/*.hpp src/utils/*.h src/learner/*.h src/learner/*.hpp
io.o: src/io/io.cpp io.o: src/io/io.cpp src/data.h src/utils/*.h
$(BIN) : $(BIN) :
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^) $(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)
@ -24,4 +24,3 @@ install:
clean: clean:
$(RM) $(OBJ) $(BIN) *~ */*~ */*/*~ $(RM) $(OBJ) $(BIN) *~ */*~ */*/*~

View File

@ -310,12 +310,11 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid); const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid);
for (size_t i = 0; i < nbatch; ++i, ++num_buffered_row_) { for (size_t i = 0; i < nbatch; ++i, ++num_buffered_row_) {
SparseBatch::Inst inst = batch[i]; SparseBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < batch.size; ++j) { for (bst_uint j = 0; j < inst.length; ++j) {
builder.AddBudget(inst[j].findex); builder.AddBudget(inst[j].findex);
} }
} }
} }
builder.InitStorage(); builder.InitStorage();
iter_->BeforeFirst(); iter_->BeforeFirst();
@ -325,9 +324,9 @@ class FMatrixS : public FMatrixInterface<FMatrixS>{
const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid); const size_t nbatch = std::min(batch.size, max_nrow - batch.base_rowid);
for (size_t i = 0; i < nbatch; ++i) { for (size_t i = 0; i < nbatch; ++i) {
SparseBatch::Inst inst = batch[i]; SparseBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < batch.size; ++j) { for (bst_uint j = 0; j < inst.length; ++j) {
builder.PushElem(inst[j].findex, builder.PushElem(inst[j].findex,
Entry((bst_uint)(batch.base_rowid+j), Entry((bst_uint)(batch.base_rowid+i),
inst[j].fvalue)); inst[j].fvalue));
} }
} }

View File

@ -7,6 +7,7 @@
*/ */
#include <vector> #include <vector>
#include "../data.h" #include "../data.h"
#include "../utils/fmap.h"
namespace xgboost { namespace xgboost {
/*! \brief namespace for gradient booster */ /*! \brief namespace for gradient booster */
@ -63,6 +64,13 @@ class IGradBooster {
int64_t buffer_offset, int64_t buffer_offset,
const std::vector<unsigned> &root_index, const std::vector<unsigned> &root_index,
std::vector<float> *out_preds) = 0; std::vector<float> *out_preds) = 0;
/*!
* \brief dump the model in text format
* \param fmap feature map that may help give interpretations of feature
* \param option extra option of the dumo model
* \return a vector of dump for boosters
*/
virtual std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) = 0;
// destrcutor // destrcutor
virtual ~IGradBooster(void){} virtual ~IGradBooster(void){}
}; };

View File

@ -141,6 +141,13 @@ class GBTree : public IGradBooster<FMatrix> {
} }
} }
} }
virtual std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) {
std::vector<std::string> dump;
for (size_t i = 0; i < trees.size(); i++) {
dump.push_back(trees[i]->DumpModel(fmap, option&1));
}
return dump;
}
protected: protected:
// clear the model // clear the model

View File

@ -7,9 +7,9 @@
namespace xgboost { namespace xgboost {
namespace io { namespace io {
DataMatrix* LoadDataMatrix(const char *fname) { DataMatrix* LoadDataMatrix(const char *fname, bool silent, bool savebuffer) {
DMatrixSimple *dmat = new DMatrixSimple(); DMatrixSimple *dmat = new DMatrixSimple();
dmat->CacheLoad(fname); dmat->CacheLoad(fname, silent, savebuffer);
return dmat; return dmat;
} }
} // namespace io } // namespace io

View File

@ -17,9 +17,11 @@ typedef learner::DMatrix<FMatrixS> DataMatrix;
/*! /*!
* \brief load DataMatrix from stream * \brief load DataMatrix from stream
* \param fname file name to be loaded * \param fname file name to be loaded
* \param silent whether print message during loading
* \param savebuffer whether temporal buffer the file if the file is in text format
* \return a loaded DMatrix * \return a loaded DMatrix
*/ */
DataMatrix* LoadDataMatrix(const char *fname); DataMatrix* LoadDataMatrix(const char *fname, bool silent = false, bool savebuffer = true);
/*! /*!
* \brief save DataMatrix into stream, * \brief save DataMatrix into stream,
* note: the saved dmatrix format may not be in exactly same as input * note: the saved dmatrix format may not be in exactly same as input

View File

@ -9,6 +9,7 @@
#include <utility> #include <utility>
#include <string> #include <string>
#include <climits> #include <climits>
#include <cmath>
#include <algorithm> #include <algorithm>
#include "./evaluation.h" #include "./evaluation.h"
#include "./helper_utils.h" #include "./helper_utils.h"

View File

@ -120,8 +120,8 @@ class BoostLearner {
} }
inline void SaveModel(utils::IStream &fo) const { inline void SaveModel(utils::IStream &fo) const {
fo.Write(&mparam, sizeof(ModelParam)); fo.Write(&mparam, sizeof(ModelParam));
fo.Write(&name_obj_); fo.Write(name_obj_);
fo.Write(&name_gbm_); fo.Write(name_gbm_);
gbm_->SaveModel(fo); gbm_->SaveModel(fo);
} }
/*! /*!
@ -139,7 +139,7 @@ class BoostLearner {
* \param p_train pointer to the data matrix * \param p_train pointer to the data matrix
*/ */
inline void UpdateOneIter(int iter, DMatrix<FMatrix> *p_train) { inline void UpdateOneIter(int iter, DMatrix<FMatrix> *p_train) {
this->PredictRaw(preds_, *p_train); this->PredictRaw(*p_train, &preds_);
obj_->GetGradient(preds_, p_train->info, iter, &gpair_); obj_->GetGradient(preds_, p_train->info, iter, &gpair_);
gbm_->DoBoost(gpair_, p_train->fmat, p_train->info.root_index); gbm_->DoBoost(gpair_, p_train->fmat, p_train->info.root_index);
} }
@ -189,7 +189,11 @@ class BoostLearner {
this->PredictRaw(data, out_preds); this->PredictRaw(data, out_preds);
obj_->PredTransform(out_preds); obj_->PredTransform(out_preds);
} }
/*! \brief dump model out */
inline std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) {
return gbm_->DumpModel(fmap, option);
}
protected: protected:
/*! /*!
* \brief initialize the objective function and GBM, * \brief initialize the objective function and GBM,
@ -212,9 +216,9 @@ class BoostLearner {
* \param out_preds output vector that stores the prediction * \param out_preds output vector that stores the prediction
*/ */
inline void PredictRaw(const DMatrix<FMatrix> &data, inline void PredictRaw(const DMatrix<FMatrix> &data,
std::vector<float> *out_preds) { std::vector<float> *out_preds) const {
gbm_->Predict(data.fmat, this->FindBufferOffset(data), gbm_->Predict(data.fmat, this->FindBufferOffset(data),
data.info, out_preds); data.info.root_index, out_preds);
} }
/*! \brief training parameter for regression */ /*! \brief training parameter for regression */
@ -280,7 +284,7 @@ class BoostLearner {
inline int64_t FindBufferOffset(const DMatrix<FMatrix> &mat) const { inline int64_t FindBufferOffset(const DMatrix<FMatrix> &mat) const {
for (size_t i = 0; i < cache_.size(); ++i) { for (size_t i = 0; i < cache_.size(); ++i) {
if (cache_[i].mat_ == &mat && mat.cache_learner_ptr_ == this) { if (cache_[i].mat_ == &mat && mat.cache_learner_ptr_ == this) {
if (cache_[i].num_row_ == mat.num_row) { if (cache_[i].num_row_ == mat.info.num_row) {
return cache_[i].buffer_offset_; return cache_[i].buffer_offset_;
} }
} }

View File

@ -6,6 +6,7 @@
* \author Tianqi Chen, Kailong Chen * \author Tianqi Chen, Kailong Chen
*/ */
#include <vector> #include <vector>
#include <cmath>
#include "./objective.h" #include "./objective.h"
namespace xgboost { namespace xgboost {

View File

@ -27,7 +27,6 @@ class ColMaker: public IUpdater<FMatrix> {
const FMatrix &fmat, const FMatrix &fmat,
const std::vector<unsigned> &root_index, const std::vector<unsigned> &root_index,
const std::vector<RegTree*> &trees) { const std::vector<RegTree*> &trees) {
for (size_t i = 0; i < trees.size(); ++i) { for (size_t i = 0; i < trees.size(); ++i) {
Builder builder(param); Builder builder(param);
builder.Update(gpair, fmat, root_index, trees[i]); builder.Update(gpair, fmat, root_index, trees[i]);
@ -132,7 +131,9 @@ class ColMaker: public IUpdater<FMatrix> {
// initialize feature index // initialize feature index
unsigned ncol = static_cast<unsigned>(fmat.NumCol()); unsigned ncol = static_cast<unsigned>(fmat.NumCol());
for (unsigned i = 0; i < ncol; ++i) { for (unsigned i = 0; i < ncol; ++i) {
if (fmat.GetColSize(i) != 0) feat_index.push_back(i); if (fmat.GetColSize(i) != 0) {
feat_index.push_back(i);
}
} }
unsigned n = static_cast<unsigned>(param.colsample_bytree * feat_index.size()); unsigned n = static_cast<unsigned>(param.colsample_bytree * feat_index.size());
random::Shuffle(feat_index); random::Shuffle(feat_index);

244
src/xgboost_main.cpp Normal file
View File

@ -0,0 +1,244 @@
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
#include <ctime>
#include <string>
#include <cstring>
#include "io/io.h"
#include "utils/utils.h"
#include "utils/config.h"
#include "learner/learner-inl.hpp"
namespace xgboost {
/*!
* \brief wrapping the training process
*/
class BoostLearnTask{
public:
inline int Run(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: <config>\n");
return 0;
}
utils::ConfigIterator itr(argv[1]);
while (itr.Next()) {
this->SetParam(itr.name(), itr.val());
}
for (int i = 2; i < argc; ++i) {
char name[256], val[256];
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2) {
this->SetParam(name, val);
}
}
this->InitData();
this->InitLearner();
if (task == "dump") {
this->TaskDump(); return 0;
}
if (task == "eval") {
this->TaskEval(); return 0;
}
if (task == "pred") {
this->TaskPred();
} else {
this->TaskTrain();
}
return 0;
}
inline void SetParam(const char *name, const char *val) {
if (!strcmp("silent", name)) silent = atoi(val);
if (!strcmp("use_buffer", name)) use_buffer = atoi(val);
if (!strcmp("seed", name)) random::Seed(atoi(val));
if (!strcmp("num_round", name)) num_round = atoi(val);
if (!strcmp("save_period", name)) save_period = atoi(val);
if (!strcmp("eval_train", name)) eval_train = atoi(val);
if (!strcmp("task", name)) task = val;
if (!strcmp("data", name)) train_path = val;
if (!strcmp("test:data", name)) test_path = val;
if (!strcmp("model_in", name)) model_in = val;
if (!strcmp("model_out", name)) model_out = val;
if (!strcmp("model_dir", name)) model_dir_path = val;
if (!strcmp("fmap", name)) name_fmap = val;
if (!strcmp("name_dump", name)) name_dump = val;
if (!strcmp("name_pred", name)) name_pred = val;
if (!strcmp("dump_stats", name)) dump_model_stats = atoi(val);
if (!strncmp("eval[", name, 5)) {
char evname[256];
utils::Assert(sscanf(name, "eval[%[^]]", evname) == 1, "must specify evaluation name for display");
eval_data_names.push_back(std::string(evname));
eval_data_paths.push_back(std::string(val));
}
learner.SetParam(name, val);
}
public:
BoostLearnTask(void) {
// default parameters
silent = 0;
use_buffer = 1;
num_round = 10;
save_period = 0;
eval_train = 0;
dump_model_stats = 0;
task = "train";
model_in = "NULL";
model_out = "NULL";
name_fmap = "NULL";
name_pred = "pred.txt";
name_dump = "dump.txt";
model_dir_path = "./";
data = NULL;
}
~BoostLearnTask(void){
for (size_t i = 0; i < deval.size(); i++){
delete deval[i];
}
if (data != NULL) delete data;
}
private:
inline void InitData(void) {
if (name_fmap != "NULL") fmap.LoadText(name_fmap.c_str());
if (task == "dump") return;
if (task == "pred") {
data = io::LoadDataMatrix(test_path.c_str(), silent != 0, use_buffer != 0);
} else {
// training
data = io::LoadDataMatrix(train_path.c_str(), silent != 0, use_buffer != 0);
{// intialize column access
data->fmat.InitColAccess();
}
utils::Assert(eval_data_names.size() == eval_data_paths.size(), "BUG");
for (size_t i = 0; i < eval_data_names.size(); ++i) {
deval.push_back(io::LoadDataMatrix(eval_data_paths[i].c_str(), silent != 0, use_buffer != 0));
devalall.push_back(deval.back());
}
std::vector<io::DataMatrix *> dcache(1, data);
for (size_t i = 0; i < deval.size(); ++ i) {
dcache.push_back(deval[i]);
}
// set cache data to be all training and evaluation data
learner.SetCacheData(dcache);
// add training set to evaluation set if needed
if( eval_train != 0 ) {
devalall.push_back(data);
eval_data_names.push_back(std::string("train"));
}
}
}
inline void InitLearner(void) {
if (model_in != "NULL"){
utils::FileStream fi(utils::FopenCheck(model_in.c_str(), "rb"));
learner.LoadModel(fi);
fi.Close();
} else {
utils::Assert(task == "train", "model_in not specified");
learner.InitModel();
}
}
inline void TaskTrain(void) {
const time_t start = time(NULL);
unsigned long elapsed = 0;
for (int i = 0; i < num_round; ++i) {
elapsed = (unsigned long)(time(NULL) - start);
if (!silent) printf("boosting round %d, %lu sec elapsed\n", i, elapsed);
learner.UpdateOneIter(i,data);
std::string res = learner.EvalOneIter(i, devalall, eval_data_names);
fprintf(stderr, "%s\n", res.c_str());
if (save_period != 0 && (i + 1) % save_period == 0) {
this->SaveModel(i);
}
elapsed = (unsigned long)(time(NULL) - start);
}
// always save final round
if ((save_period == 0 || num_round % save_period != 0) && model_out != "NONE") {
if (model_out == "NULL"){
this->SaveModel(num_round - 1);
} else {
this->SaveModel(model_out.c_str());
}
}
if (!silent){
printf("\nupdating end, %lu sec in all\n", elapsed);
}
}
inline void TaskEval(void) {
learner.EvalOneIter(0, devalall, eval_data_names);
}
inline void TaskDump(void){
FILE *fo = utils::FopenCheck(name_dump.c_str(), "w");
std::vector<std::string> dump = learner.DumpModel(fmap, dump_model_stats != 0);
for (size_t i = 0; i < dump.size(); ++ i) {
fprintf(fo,"booster[%lu]:\n", i);
fprintf(fo,"%s", dump[i].c_str());
}
fclose(fo);
}
inline void SaveModel(const char *fname) const {
utils::FileStream fo(utils::FopenCheck(fname, "wb"));
learner.SaveModel(fo);
fo.Close();
}
inline void SaveModel(int i) const {
char fname[256];
sprintf(fname, "%s/%04d.model", model_dir_path.c_str(), i + 1);
this->SaveModel(fname);
}
inline void TaskPred(void) {
std::vector<float> preds;
if (!silent) printf("start prediction...\n");
learner.Predict(*data, &preds);
if (!silent) printf("writing prediction to %s\n", name_pred.c_str());
FILE *fo = utils::FopenCheck(name_pred.c_str(), "w");
for (size_t i = 0; i < preds.size(); i++) {
fprintf(fo, "%f\n", preds[i]);
}
fclose(fo);
}
private:
/* \brief whether silent */
int silent;
/* \brief whether use auto binary buffer */
int use_buffer;
/* \brief whether evaluate training statistics */
int eval_train;
/* \brief number of boosting iterations */
int num_round;
/* \brief the period to save the model, 0 means only save the final round model */
int save_period;
/* \brief the path of training/test data set */
std::string train_path, test_path;
/* \brief the path of test model file, or file to restart training */
std::string model_in;
/* \brief the path of final model file, to be saved */
std::string model_out;
/* \brief the path of directory containing the saved models */
std::string model_dir_path;
/* \brief task to perform */
std::string task;
/* \brief name of predict file */
std::string name_pred;
/* \brief whether dump statistics along with model */
int dump_model_stats;
/* \brief name of feature map */
std::string name_fmap;
/* \brief name of dump file */
std::string name_dump;
/* \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/* \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
private:
io::DataMatrix* data;
std::vector<io::DataMatrix*> deval;
std::vector<const io::DataMatrix*> devalall;
utils::FeatMap fmap;
learner::BoostLearner<FMatrixS> learner;
};
}
int main(int argc, char *argv[]){
xgboost::random::Seed(0);
xgboost::BoostLearnTask tsk;
return tsk.Run(argc, argv);
}