add a test folder
This commit is contained in:
parent
74828295fe
commit
2bdcad9630
@ -10,6 +10,8 @@ test:data = "agaricus.txt.test"
|
|||||||
booster_type = 0
|
booster_type = 0
|
||||||
loss_type = 2
|
loss_type = 2
|
||||||
|
|
||||||
|
bst:tree_maker=2
|
||||||
|
|
||||||
bst:eta=1.0
|
bst:eta=1.0
|
||||||
bst:gamma=1.0
|
bst:gamma=1.0
|
||||||
bst:min_child_weight=1
|
bst:min_child_weight=1
|
||||||
|
|||||||
8124
demo/test/agaricus-lepiota.data
Normal file
8124
demo/test/agaricus-lepiota.data
Normal file
File diff suppressed because it is too large
Load Diff
32
demo/test/agaricus-lepiota.fmap
Normal file
32
demo/test/agaricus-lepiota.fmap
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
1. cap-shape: bell=b,conical=c,convex=x,flat=f,knobbed=k,sunken=s
|
||||||
|
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
|
||||||
|
3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,red=e,white=w,yellow=y
|
||||||
|
4. bruises?: bruises=t,no=f
|
||||||
|
5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,
|
||||||
|
musty=m,none=n,pungent=p,spicy=s
|
||||||
|
6. gill-attachment: attached=a,descending=d,free=f,notched=n
|
||||||
|
7. gill-spacing: close=c,crowded=w,distant=d
|
||||||
|
8. gill-size: broad=b,narrow=n
|
||||||
|
9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g,
|
||||||
|
green=r,orange=o,pink=p,purple=u,red=e,
|
||||||
|
white=w,yellow=y
|
||||||
|
10. stalk-shape: enlarging=e,tapering=t
|
||||||
|
11. stalk-root: bulbous=b,club=c,cup=u,equal=e,
|
||||||
|
rhizomorphs=z,rooted=r,missing=?
|
||||||
|
12. stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
|
||||||
|
13. stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
|
||||||
|
14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
|
||||||
|
pink=p,red=e,white=w,yellow=y
|
||||||
|
15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
|
||||||
|
pink=p,red=e,white=w,yellow=y
|
||||||
|
16. veil-type: partial=p,universal=u
|
||||||
|
17. veil-color: brown=n,orange=o,white=w,yellow=y
|
||||||
|
18. ring-number: none=n,one=o,two=t
|
||||||
|
19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l,
|
||||||
|
none=n,pendant=p,sheathing=s,zone=z
|
||||||
|
20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r,
|
||||||
|
orange=o,purple=u,white=w,yellow=y
|
||||||
|
21. population: abundant=a,clustered=c,numerous=n,
|
||||||
|
scattered=s,several=v,solitary=y
|
||||||
|
22. habitat: grasses=g,leaves=l,meadows=m,paths=p,
|
||||||
|
urban=u,waste=w,woods=d
|
||||||
148
demo/test/agaricus-lepiota.names
Normal file
148
demo/test/agaricus-lepiota.names
Normal file
@ -0,0 +1,148 @@
|
|||||||
|
1. Title: Mushroom Database
|
||||||
|
|
||||||
|
2. Sources:
|
||||||
|
(a) Mushroom records drawn from The Audubon Society Field Guide to North
|
||||||
|
American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred
|
||||||
|
A. Knopf
|
||||||
|
(b) Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)
|
||||||
|
(c) Date: 27 April 1987
|
||||||
|
|
||||||
|
3. Past Usage:
|
||||||
|
1. Schlimmer,J.S. (1987). Concept Acquisition Through Representational
|
||||||
|
Adjustment (Technical Report 87-19). Doctoral disseration, Department
|
||||||
|
of Information and Computer Science, University of California, Irvine.
|
||||||
|
--- STAGGER: asymptoted to 95% classification accuracy after reviewing
|
||||||
|
1000 instances.
|
||||||
|
2. Iba,W., Wogulis,J., & Langley,P. (1988). Trading off Simplicity
|
||||||
|
and Coverage in Incremental Concept Learning. In Proceedings of
|
||||||
|
the 5th International Conference on Machine Learning, 73-79.
|
||||||
|
Ann Arbor, Michigan: Morgan Kaufmann.
|
||||||
|
-- approximately the same results with their HILLARY algorithm
|
||||||
|
3. In the following references a set of rules (given below) were
|
||||||
|
learned for this data set which may serve as a point of
|
||||||
|
comparison for other researchers.
|
||||||
|
|
||||||
|
Duch W, Adamczak R, Grabczewski K (1996) Extraction of logical rules
|
||||||
|
from training data using backpropagation networks, in: Proc. of the
|
||||||
|
The 1st Online Workshop on Soft Computing, 19-30.Aug.1996, pp. 25-30,
|
||||||
|
available on-line at: http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/
|
||||||
|
|
||||||
|
Duch W, Adamczak R, Grabczewski K, Ishikawa M, Ueda H, Extraction of
|
||||||
|
crisp logical rules using constrained backpropagation networks -
|
||||||
|
comparison of two new approaches, in: Proc. of the European Symposium
|
||||||
|
on Artificial Neural Networks (ESANN'97), Bruge, Belgium 16-18.4.1997,
|
||||||
|
pp. xx-xx
|
||||||
|
|
||||||
|
Wlodzislaw Duch, Department of Computer Methods, Nicholas Copernicus
|
||||||
|
University, 87-100 Torun, Grudziadzka 5, Poland
|
||||||
|
e-mail: duch@phys.uni.torun.pl
|
||||||
|
WWW http://www.phys.uni.torun.pl/kmk/
|
||||||
|
|
||||||
|
Date: Mon, 17 Feb 1997 13:47:40 +0100
|
||||||
|
From: Wlodzislaw Duch <duch@phys.uni.torun.pl>
|
||||||
|
Organization: Dept. of Computer Methods, UMK
|
||||||
|
|
||||||
|
I have attached a file containing logical rules for mushrooms.
|
||||||
|
It should be helpful for other people since only in the last year I
|
||||||
|
have seen about 10 papers analyzing this dataset and obtaining quite
|
||||||
|
complex rules. We will try to contribute other results later.
|
||||||
|
|
||||||
|
With best regards, Wlodek Duch
|
||||||
|
________________________________________________________________
|
||||||
|
|
||||||
|
Logical rules for the mushroom data sets.
|
||||||
|
|
||||||
|
Logical rules given below seem to be the simplest possible for the
|
||||||
|
mushroom dataset and therefore should be treated as benchmark results.
|
||||||
|
|
||||||
|
Disjunctive rules for poisonous mushrooms, from most general
|
||||||
|
to most specific:
|
||||||
|
|
||||||
|
P_1) odor=NOT(almond.OR.anise.OR.none)
|
||||||
|
120 poisonous cases missed, 98.52% accuracy
|
||||||
|
|
||||||
|
P_2) spore-print-color=green
|
||||||
|
48 cases missed, 99.41% accuracy
|
||||||
|
|
||||||
|
P_3) odor=none.AND.stalk-surface-below-ring=scaly.AND.
|
||||||
|
(stalk-color-above-ring=NOT.brown)
|
||||||
|
8 cases missed, 99.90% accuracy
|
||||||
|
|
||||||
|
P_4) habitat=leaves.AND.cap-color=white
|
||||||
|
100% accuracy
|
||||||
|
|
||||||
|
Rule P_4) may also be
|
||||||
|
|
||||||
|
P_4') population=clustered.AND.cap_color=white
|
||||||
|
|
||||||
|
These rule involve 6 attributes (out of 22). Rules for edible
|
||||||
|
mushrooms are obtained as negation of the rules given above, for
|
||||||
|
example the rule:
|
||||||
|
|
||||||
|
odor=(almond.OR.anise.OR.none).AND.spore-print-color=NOT.green
|
||||||
|
|
||||||
|
gives 48 errors, or 99.41% accuracy on the whole dataset.
|
||||||
|
|
||||||
|
Several slightly more complex variations on these rules exist,
|
||||||
|
involving other attributes, such as gill_size, gill_spacing,
|
||||||
|
stalk_surface_above_ring, but the rules given above are the simplest
|
||||||
|
we have found.
|
||||||
|
|
||||||
|
|
||||||
|
4. Relevant Information:
|
||||||
|
This data set includes descriptions of hypothetical samples
|
||||||
|
corresponding to 23 species of gilled mushrooms in the Agaricus and
|
||||||
|
Lepiota Family (pp. 500-525). Each species is identified as
|
||||||
|
definitely edible, definitely poisonous, or of unknown edibility and
|
||||||
|
not recommended. This latter class was combined with the poisonous
|
||||||
|
one. The Guide clearly states that there is no simple rule for
|
||||||
|
determining the edibility of a mushroom; no rule like ``leaflets
|
||||||
|
three, let it be'' for Poisonous Oak and Ivy.
|
||||||
|
|
||||||
|
5. Number of Instances: 8124
|
||||||
|
|
||||||
|
6. Number of Attributes: 22 (all nominally valued)
|
||||||
|
|
||||||
|
7. Attribute Information: (classes: edible=e, poisonous=p)
|
||||||
|
1. cap-shape: bell=b,conical=c,convex=x,flat=f,
|
||||||
|
knobbed=k,sunken=s
|
||||||
|
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
|
||||||
|
3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,
|
||||||
|
pink=p,purple=u,red=e,white=w,yellow=y
|
||||||
|
4. bruises?: bruises=t,no=f
|
||||||
|
5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,
|
||||||
|
musty=m,none=n,pungent=p,spicy=s
|
||||||
|
6. gill-attachment: attached=a,descending=d,free=f,notched=n
|
||||||
|
7. gill-spacing: close=c,crowded=w,distant=d
|
||||||
|
8. gill-size: broad=b,narrow=n
|
||||||
|
9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g,
|
||||||
|
green=r,orange=o,pink=p,purple=u,red=e,
|
||||||
|
white=w,yellow=y
|
||||||
|
10. stalk-shape: enlarging=e,tapering=t
|
||||||
|
11. stalk-root: bulbous=b,club=c,cup=u,equal=e,
|
||||||
|
rhizomorphs=z,rooted=r,missing=?
|
||||||
|
12. stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
|
||||||
|
13. stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
|
||||||
|
14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
|
||||||
|
pink=p,red=e,white=w,yellow=y
|
||||||
|
15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
|
||||||
|
pink=p,red=e,white=w,yellow=y
|
||||||
|
16. veil-type: partial=p,universal=u
|
||||||
|
17. veil-color: brown=n,orange=o,white=w,yellow=y
|
||||||
|
18. ring-number: none=n,one=o,two=t
|
||||||
|
19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l,
|
||||||
|
none=n,pendant=p,sheathing=s,zone=z
|
||||||
|
20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r,
|
||||||
|
orange=o,purple=u,white=w,yellow=y
|
||||||
|
21. population: abundant=a,clustered=c,numerous=n,
|
||||||
|
scattered=s,several=v,solitary=y
|
||||||
|
22. habitat: grasses=g,leaves=l,meadows=m,paths=p,
|
||||||
|
urban=u,waste=w,woods=d
|
||||||
|
|
||||||
|
8. Missing Attribute Values: 2480 of them (denoted by "?"), all for
|
||||||
|
attribute #11.
|
||||||
|
|
||||||
|
9. Class Distribution:
|
||||||
|
-- edible: 4208 (51.8%)
|
||||||
|
-- poisonous: 3916 (48.2%)
|
||||||
|
-- total: 8124 instances
|
||||||
80
demo/test/dump2json.py
Executable file
80
demo/test/dump2json.py
Executable file
@ -0,0 +1,80 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
|
||||||
|
def loadnmap( fname ):
|
||||||
|
nmap = {}
|
||||||
|
for l in open(fname):
|
||||||
|
arr = l.split()
|
||||||
|
nmap[int(arr[0])] = arr[1].strip()
|
||||||
|
return nmap
|
||||||
|
|
||||||
|
def recstats( rec, l, label ):
|
||||||
|
for it in l.split(','):
|
||||||
|
k = int( it )
|
||||||
|
if k not in rec:
|
||||||
|
rec[ k ] = (0,0)
|
||||||
|
else:
|
||||||
|
if label == 0:
|
||||||
|
rec[k] = (rec[k][0]+1,rec[k][1])
|
||||||
|
else:
|
||||||
|
rec[k] = (rec[k][0],rec[k][1]+1)
|
||||||
|
|
||||||
|
def loadstats( fname, fpath ):
|
||||||
|
res = {}
|
||||||
|
fp = open( fname )
|
||||||
|
for l in open( fpath ):
|
||||||
|
label = int( fp.readline().split()[0] )
|
||||||
|
arr = l.split()
|
||||||
|
for i in xrange( len(arr) ):
|
||||||
|
if i not in res:
|
||||||
|
res[ i ] = {}
|
||||||
|
recstats( res[ i ], arr[i], label )
|
||||||
|
return res
|
||||||
|
|
||||||
|
def mapid( idmap, fid, bid ):
|
||||||
|
if (bid, fid) not in idmap:
|
||||||
|
idmap[ (bid,fid) ] = len(idmap)
|
||||||
|
return idmap[ (bid,fid) ]
|
||||||
|
|
||||||
|
def dumpjson( fo, trees ):
|
||||||
|
fo.write('{\n')
|
||||||
|
fo.write(' \"roots\":'+json.dumps( trees['roots'], separators=(' , ',' : ') ) +',\n' )
|
||||||
|
fo.write(' \"weights\":'+json.dumps( trees['weights'], separators=(' , ',' : ') ) +',\n' )
|
||||||
|
fo.write(' \"nodes\":[\n' )
|
||||||
|
fo.write('%s\n ]' % ',\n'.join((' %s' % json.dumps( n, separators=(' , ',' : ') ) ) for n in trees['nodes']) )
|
||||||
|
fo.write('\n}\n')
|
||||||
|
|
||||||
|
fo = sys.stdout
|
||||||
|
nmap = loadnmap( 'featmap.txt' )
|
||||||
|
stat = loadstats( 'agaricus.txt.test', 'dump.path.txt' )
|
||||||
|
|
||||||
|
trees = {'roots':[], 'weights':[], 'nodes':[] }
|
||||||
|
idmap = {}
|
||||||
|
|
||||||
|
for l in open( 'dump.raw.txt'):
|
||||||
|
if l.startswith('booster['):
|
||||||
|
bid = int( l.split('[')[1].split(']')[0] )
|
||||||
|
trees['roots'].append( mapid(idmap,bid,0) )
|
||||||
|
trees['weights'].append( 1.0 )
|
||||||
|
continue
|
||||||
|
|
||||||
|
node = {}
|
||||||
|
rid = int( l.split(':')[0] )
|
||||||
|
node['id'] = mapid( idmap, bid, rid )
|
||||||
|
node['neg_cnt' ] = stat[ bid ][ rid ][ 0 ]
|
||||||
|
node['pos_cnt' ] = stat[ bid ][ rid ][ 1 ]
|
||||||
|
|
||||||
|
idx = l.find('[f')
|
||||||
|
if idx != -1:
|
||||||
|
fid = int( l[idx+2:len(l)].split('<')[0])
|
||||||
|
node['label'] = nmap[ fid ]
|
||||||
|
node['children'] = [ mapid( idmap, bid, int(it.split('=')[1]) ) for it in l.split()[1].split(',') ]
|
||||||
|
node['edge_tags'] = ['yes','no']
|
||||||
|
else:
|
||||||
|
node['label'] = l.split(':')[1].strip()
|
||||||
|
node['value'] = float(l.split(':')[1].split('=')[1])
|
||||||
|
|
||||||
|
trees['nodes'].append( node )
|
||||||
|
trees['nodes'].sort( key = lambda x:x['id'] )
|
||||||
|
dumpjson( sys.stderr, trees)
|
||||||
50
demo/test/mapfeat.py
Executable file
50
demo/test/mapfeat.py
Executable file
@ -0,0 +1,50 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
import sys
|
||||||
|
|
||||||
|
def loadfmap( fname ):
|
||||||
|
fmap = {}
|
||||||
|
nmap = {}
|
||||||
|
|
||||||
|
for l in open( fname ):
|
||||||
|
arr = l.split()
|
||||||
|
if arr[0].find('.') != -1:
|
||||||
|
idx = int( arr[0].strip('.') )
|
||||||
|
assert idx not in fmap
|
||||||
|
fmap[ idx ] = {}
|
||||||
|
ftype = arr[1].strip(':')
|
||||||
|
content = arr[2]
|
||||||
|
else:
|
||||||
|
content = arr[0]
|
||||||
|
for it in content.split(','):
|
||||||
|
if it.strip() == '':
|
||||||
|
continue
|
||||||
|
k , v = it.split('=')
|
||||||
|
fmap[ idx ][ v ] = len(nmap)
|
||||||
|
nmap[ len(nmap) ] = ftype+'='+k
|
||||||
|
return fmap, nmap
|
||||||
|
|
||||||
|
def write_nmap( fo, nmap ):
|
||||||
|
for i in xrange( len(nmap) ):
|
||||||
|
fo.write('%d\t%s\ti\n' % (i, nmap[i]) )
|
||||||
|
|
||||||
|
# start here
|
||||||
|
fmap, nmap = loadfmap( 'agaricus-lepiota.fmap' )
|
||||||
|
fo = open( 'featmap.txt', 'w' )
|
||||||
|
write_nmap( fo, nmap )
|
||||||
|
fo.close()
|
||||||
|
|
||||||
|
fo = open( 'agaricus.txt', 'w' )
|
||||||
|
for l in open( 'agaricus-lepiota.data' ):
|
||||||
|
arr = l.split(',')
|
||||||
|
if arr[0] == 'p':
|
||||||
|
fo.write('1')
|
||||||
|
else:
|
||||||
|
assert arr[0] == 'e'
|
||||||
|
fo.write('0')
|
||||||
|
for i in xrange( 1,len(arr) ):
|
||||||
|
fo.write( ' %d:1' % fmap[i][arr[i].strip()] )
|
||||||
|
fo.write('\n')
|
||||||
|
|
||||||
|
fo.close()
|
||||||
|
|
||||||
|
|
||||||
29
demo/test/mknfold.py
Executable file
29
demo/test/mknfold.py
Executable file
@ -0,0 +1,29 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
import sys
|
||||||
|
import random
|
||||||
|
|
||||||
|
if len(sys.argv) < 2:
|
||||||
|
print 'Usage:<filename> <k> [nfold = 5]'
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
random.seed( 10 )
|
||||||
|
|
||||||
|
k = int( sys.argv[2] )
|
||||||
|
if len(sys.argv) > 3:
|
||||||
|
nfold = int( sys.argv[3] )
|
||||||
|
else:
|
||||||
|
nfold = 5
|
||||||
|
|
||||||
|
fi = open( sys.argv[1], 'r' )
|
||||||
|
ftr = open( sys.argv[1]+'.train', 'w' )
|
||||||
|
fte = open( sys.argv[1]+'.test', 'w' )
|
||||||
|
for l in fi:
|
||||||
|
if random.randint( 1 , nfold ) == k:
|
||||||
|
fte.write( l )
|
||||||
|
else:
|
||||||
|
ftr.write( l )
|
||||||
|
|
||||||
|
fi.close()
|
||||||
|
ftr.close()
|
||||||
|
fte.close()
|
||||||
|
|
||||||
12
demo/test/runexp.sh
Executable file
12
demo/test/runexp.sh
Executable file
@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# map feature using indicator encoding, also produce featmap.txt
|
||||||
|
python mapfeat.py
|
||||||
|
# split train and test
|
||||||
|
python mknfold.py agaricus.txt 1
|
||||||
|
# training
|
||||||
|
../../xgboost mushroom.conf
|
||||||
|
# this is what dump will looklike without feature map
|
||||||
|
../../xgboost mushroom.conf task=dump model_in=0003.model name_dump=dump.raw.txt
|
||||||
|
# this is what dump will looklike with feature map
|
||||||
|
../../xgboost mushroom.conf task=dump model_in=0003.model fmap=featmap.txt name_dump=dump.nice.txt
|
||||||
|
cat dump.nice.txt
|
||||||
Loading…
x
Reference in New Issue
Block a user