new lambda rank interface
This commit is contained in:
parent
da0bb3f44e
commit
2baeeabac4
@ -2,9 +2,9 @@
|
||||
# choose the tree booster, 0: tree, 1: linear
|
||||
booster_type = 0
|
||||
|
||||
#objective="rank:pairwise"
|
||||
objective="rank:pairwise"
|
||||
#objective="rank:softmax"
|
||||
objective="lambdarank:map"
|
||||
#objective="lambdarank:map"
|
||||
#objective="lambdarank:ndcg"
|
||||
|
||||
# Tree Booster Parameters
|
||||
|
||||
164
regrank/xgboost_regrank_dev.hpp
Normal file
164
regrank/xgboost_regrank_dev.hpp
Normal file
@ -0,0 +1,164 @@
|
||||
// some backup code
|
||||
|
||||
class LambdaRankObj_NDCG : public LambdaRankObj{
|
||||
|
||||
static inline float CalcDCG(const std::vector< float > &rec) {
|
||||
double sumdcg = 0.0;
|
||||
for (size_t i = 0; i < rec.size(); i++){
|
||||
const unsigned rel = static_cast<unsigned>(rec[i]);
|
||||
if (rel != 0){
|
||||
sumdcg += logf(2.0f) *((1 << rel) - 1) / logf(i + 2);
|
||||
}
|
||||
}
|
||||
return static_cast<float>(sumdcg);
|
||||
}
|
||||
|
||||
/*
|
||||
* \brief Obtain the delta NDCG if trying to switch the positions of instances in index1 or index2
|
||||
* in sorted triples. Here DCG is calculated as sigma_i 2^rel_i/log(i + 1)
|
||||
* \param sorted_triple the fields are predition,label,original index
|
||||
* \param index1,index2 the instances switched
|
||||
* \param the IDCG of the list
|
||||
*/
|
||||
inline float GetLambdaNDCG(const std::vector< Triple > sorted_triple,
|
||||
int index1,
|
||||
int index2, float IDCG){
|
||||
double original = (1 << static_cast<int>(sorted_triple[index1].label_)) / log(index1 + 2)
|
||||
+ (1 << static_cast<int>(sorted_triple[index2].label_)) / log(index2 + 2);
|
||||
double changed = (1 << static_cast<int>(sorted_triple[index2].label_)) / log(index1 + 2)
|
||||
+ (1 << static_cast<int>(sorted_triple[index1].label_)) / log(index2 + 2);
|
||||
double ans = (original - changed) / IDCG;
|
||||
if (ans < 0) ans = -ans;
|
||||
return static_cast<float>(ans);
|
||||
}
|
||||
|
||||
|
||||
inline float GetIDCG(const std::vector< Triple > sorted_triple){
|
||||
std::vector<float> labels;
|
||||
for (size_t i = 0; i < sorted_triple.size(); i++){
|
||||
labels.push_back(sorted_triple[i].label_);
|
||||
}
|
||||
|
||||
std::sort(labels.begin(), labels.end(), std::greater<float>());
|
||||
return CalcDCG(labels);
|
||||
}
|
||||
|
||||
inline void GetLambda(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
const std::vector< std::pair<int, int> > &pairs, std::vector<float> &lambda, int group){
|
||||
std::vector< Triple > sorted_triple;
|
||||
std::vector<int> index_remap;
|
||||
float IDCG;
|
||||
|
||||
GetSortedTuple(preds, labels, group_index, group, sorted_triple);
|
||||
GetIndexMap(sorted_triple, group_index[group], index_remap);
|
||||
IDCG = GetIDCG(sorted_triple);
|
||||
|
||||
lambda.resize(pairs.size());
|
||||
for (size_t i = 0; i < pairs.size(); i++){
|
||||
lambda[i] = GetLambdaNDCG(sorted_triple,
|
||||
index_remap[pairs[i].first],index_remap[pairs[i].second],IDCG);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class LambdaRankObj_MAP : public LambdaRankObj{
|
||||
class Quadruple{
|
||||
public:
|
||||
/* \brief the accumulated precision */
|
||||
float ap_acc_;
|
||||
/* \brief the accumulated precision assuming a positive instance is missing*/
|
||||
float ap_acc_miss_;
|
||||
/* \brief the accumulated precision assuming that one more positive instance is inserted ahead*/
|
||||
float ap_acc_add_;
|
||||
/* \brief the accumulated positive instance count */
|
||||
float hits_;
|
||||
|
||||
Quadruple(){}
|
||||
|
||||
Quadruple(const Quadruple& q){
|
||||
ap_acc_ = q.ap_acc_;
|
||||
ap_acc_miss_ = q.ap_acc_miss_;
|
||||
ap_acc_add_ = q.ap_acc_add_;
|
||||
hits_ = q.hits_;
|
||||
}
|
||||
|
||||
Quadruple(float ap_acc, float ap_acc_miss, float ap_acc_add, float hits
|
||||
) :ap_acc_(ap_acc), ap_acc_miss_(ap_acc_miss), ap_acc_add_(ap_acc_add), hits_(hits){
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/*
|
||||
* \brief Obtain the delta MAP if trying to switch the positions of instances in index1 or index2
|
||||
* in sorted triples
|
||||
* \param sorted_triple the fields are predition,label,original index
|
||||
* \param index1,index2 the instances switched
|
||||
* \param map_acc a vector containing the accumulated precisions for each position in a list
|
||||
*/
|
||||
inline float GetLambdaMAP(const std::vector< Triple > sorted_triple,
|
||||
int index1, int index2,
|
||||
std::vector< Quadruple > &map_acc){
|
||||
if (index1 == index2 || sorted_triple[index1].label_ == sorted_triple[index2].label_) return 0.0;
|
||||
if (index1 > index2) std::swap(index1, index2);
|
||||
float original = map_acc[index2].ap_acc_; // The accumulated precision in the interval [index1,index2]
|
||||
if (index1 != 0) original -= map_acc[index1 - 1].ap_acc_;
|
||||
float changed = 0;
|
||||
if (sorted_triple[index1].label_ < sorted_triple[index2].label_){
|
||||
changed += map_acc[index2 - 1].ap_acc_add_ - map_acc[index1].ap_acc_add_;
|
||||
changed += (map_acc[index1].hits_ + 1.0f) / (index1 + 1);
|
||||
}
|
||||
else{
|
||||
changed += map_acc[index2 - 1].ap_acc_miss_ - map_acc[index1].ap_acc_miss_;
|
||||
changed += map_acc[index2].hits_ / (index2 + 1);
|
||||
}
|
||||
float ans = (changed - original) / (map_acc[map_acc.size() - 1].hits_);
|
||||
if (ans < 0) ans = -ans;
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* \brief preprocessing results for calculating delta MAP
|
||||
* \return The first field is the accumulated precision, the second field is the
|
||||
* accumulated precision assuming a positive instance is missing,
|
||||
* the third field is the accumulated precision assuming that one more positive
|
||||
* instance is inserted, the fourth field is the accumulated positive instance count
|
||||
*/
|
||||
inline void GetMAPAcc(const std::vector< Triple > sorted_triple,
|
||||
std::vector< Quadruple > &map_acc){
|
||||
map_acc.resize(sorted_triple.size());
|
||||
float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
|
||||
for (size_t i = 1; i <= sorted_triple.size(); i++){
|
||||
if ((int)sorted_triple[i - 1].label_ == 1) {
|
||||
hit++;
|
||||
acc1 += hit / i;
|
||||
acc2 += (hit - 1) / i;
|
||||
acc3 += (hit + 1) / i;
|
||||
}
|
||||
map_acc[i-1] = Quadruple(acc1, acc2, acc3, hit);
|
||||
}
|
||||
}
|
||||
|
||||
inline void GetLambda(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
const std::vector< std::pair<int, int> > &pairs, std::vector<float> &lambda, int group){
|
||||
std::vector< Triple > sorted_triple;
|
||||
std::vector<int> index_remap;
|
||||
std::vector< Quadruple > map_acc;
|
||||
|
||||
GetSortedTuple(preds, labels, group_index, group, sorted_triple);
|
||||
GetIndexMap(sorted_triple, group_index[group], index_remap);
|
||||
GetMAPAcc(sorted_triple, map_acc);
|
||||
|
||||
lambda.resize(pairs.size());
|
||||
for (size_t i = 0; i < pairs.size(); i++){
|
||||
lambda[i] = GetLambdaMAP(sorted_triple,
|
||||
index_remap[pairs[i].first], index_remap[pairs[i].second], map_acc);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@ -113,8 +113,8 @@ namespace xgboost{
|
||||
if( !strcmp("rank:pairwise", name ) ) return new PairwiseRankObj();
|
||||
if( !strcmp("rank:softmax", name ) ) return new SoftmaxRankObj();
|
||||
if( !strcmp("softmax", name ) ) return new SoftmaxMultiClassObj();
|
||||
if (!strcmp("lambdarank:map", name)) return new LambdaRankObj_MAP();
|
||||
if (!strcmp("lambdarank:ndcg", name)) return new LambdaRankObj_NDCG();
|
||||
// if (!strcmp("lambdarank:map", name)) return new LambdaRankObj_MAP();
|
||||
// if (!strcmp("lambdarank:ndcg", name)) return new LambdaRankObj_NDCG();
|
||||
utils::Error("unknown objective function type");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -180,21 +180,23 @@ namespace xgboost{
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
namespace regrank{
|
||||
// simple pairwise rank
|
||||
class PairwiseRankObj : public IObjFunction{
|
||||
/*! \brief objective for lambda rank */
|
||||
class LambdaRankObj : public IObjFunction{
|
||||
public:
|
||||
PairwiseRankObj(void){
|
||||
LambdaRankObj(void){
|
||||
loss.loss_type = LossType::kLogisticRaw;
|
||||
fix_list_weight = 0.0f;
|
||||
num_pairsample = 1;
|
||||
}
|
||||
virtual ~PairwiseRankObj(){}
|
||||
virtual ~LambdaRankObj(){}
|
||||
virtual void SetParam(const char *name, const char *val){
|
||||
if( !strcmp( "loss_type", name ) ) loss.loss_type = atoi( val );
|
||||
if( !strcmp( "loss_type", name ) ) loss.loss_type = atoi( val );
|
||||
if( !strcmp( "fix_list_weight", name ) ) fix_list_weight = (float)atof( val );
|
||||
if( !strcmp( "num_pairsample", name ) ) num_pairsample = atoi( val );
|
||||
}
|
||||
public:
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
const DMatrix::Info &info,
|
||||
int iter,
|
||||
@ -211,16 +213,24 @@ namespace xgboost{
|
||||
// parall construct, declare random number generator here, so that each
|
||||
// thread use its own random number generator, seed by thread id and current iteration
|
||||
random::Random rnd; rnd.Seed( iter * 1111 + omp_get_thread_num() );
|
||||
std::vector<LambdaPair> pairs;
|
||||
std::vector<ListEntry> lst;
|
||||
std::vector< std::pair<float,unsigned> > rec;
|
||||
|
||||
#pragma omp for schedule(static)
|
||||
for (unsigned k = 0; k < ngroup; ++k){
|
||||
rec.clear();
|
||||
lst.clear(); pairs.clear();
|
||||
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
|
||||
rec.push_back( std::make_pair(info.labels[j], j) );
|
||||
lst.push_back( ListEntry(preds[j], info.labels[j], j ) );
|
||||
grad[j] = hess[j] = 0.0f;
|
||||
}
|
||||
std::sort( lst.begin(), lst.end(), ListEntry::CmpPred );
|
||||
rec.resize( lst.size() );
|
||||
for( unsigned i = 0; i < lst.size(); ++i ){
|
||||
rec[i] = std::make_pair( lst[i].label, i );
|
||||
}
|
||||
std::sort( rec.begin(), rec.end(), CmpFirst );
|
||||
// enumerate buckets with same label, for each item in the list, grab another sample randomly
|
||||
// enumerate buckets with same label, for each item in the lst, grab another sample randomly
|
||||
for( unsigned i = 0; i < rec.size(); ){
|
||||
unsigned j = i + 1;
|
||||
while( j < rec.size() && rec[j].first == rec[i].first ) ++ j;
|
||||
@ -232,73 +242,49 @@ namespace xgboost{
|
||||
for( unsigned pid = i; pid < j; ++ pid ){
|
||||
unsigned ridx = static_cast<unsigned>( rnd.RandDouble() * (nleft+nright) );
|
||||
if( ridx < nleft ){
|
||||
// get the samples in left side, ridx is pos sample
|
||||
this->AddGradient( rec[ridx].second, rec[pid].second, preds, grad, hess );
|
||||
pairs.push_back( LambdaPair( rec[ridx].second, rec[pid].second ) );
|
||||
}else{
|
||||
// get samples in right side, ridx is negsample
|
||||
this->AddGradient( rec[pid].second, rec[ridx+j-i].second, preds, grad, hess );
|
||||
pairs.push_back( LambdaPair( rec[pid].second, rec[ridx+j-i].second ) );
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
for( unsigned pid = i; pid < j; ++ pid ){
|
||||
utils::Assert( rec[pid].first == 0.0f );
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
// rescale each gradient and hessian so that the list have constant weight
|
||||
// get lambda weight for the pairs
|
||||
this->GetLambdaWeight( lst, pairs );
|
||||
// rescale each gradient and hessian so that the lst have constant weighted
|
||||
float scale = 1.0f / num_pairsample;
|
||||
if( fix_list_weight != 0.0f ){
|
||||
scale *= fix_list_weight / (gptr[k+1] - gptr[k]);
|
||||
}
|
||||
if( scale != 1.0f ){
|
||||
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
|
||||
grad[j] *= scale; hess[j] *= scale;
|
||||
}
|
||||
}
|
||||
for( size_t i = 0; i < pairs.size(); ++ i ){
|
||||
const ListEntry &pos = lst[ pairs[i].pos_index ];
|
||||
const ListEntry &neg = lst[ pairs[i].neg_index ];
|
||||
const float w = pairs[i].weight * scale;
|
||||
float p = loss.PredTransform( pos.pred - neg.pred );
|
||||
float g = loss.FirstOrderGradient( p, 1.0f );
|
||||
float h = loss.SecondOrderGradient( p, 1.0f );
|
||||
// accumulate gradient and hessian in both pid, and nid,
|
||||
grad[ pos.rindex ] += g * w;
|
||||
grad[ neg.rindex ] -= g * w;
|
||||
// take conservative update, scale hessian by 2
|
||||
hess[ pos.rindex ] += 2.0f * h * w;
|
||||
hess[ neg.rindex ] += 2.0f * h * w;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
return "map";
|
||||
}
|
||||
private:
|
||||
inline void AddGradient( unsigned pid, unsigned nid,
|
||||
const std::vector<float> &pred,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess ){
|
||||
float p = loss.PredTransform( pred[pid]-pred[nid] );
|
||||
float g = loss.FirstOrderGradient( p, 1.0f );
|
||||
float h = loss.SecondOrderGradient( p, 1.0f );
|
||||
// accumulate gradient and hessian in both pid, and nid,
|
||||
grad[pid] += g; grad[nid] -= g;
|
||||
// take conservative update, scale hessian by 2
|
||||
hess[pid] += 2.0f * h; hess[nid] += 2.0f * h;
|
||||
}
|
||||
private:
|
||||
// number of samples peformed for each instance
|
||||
int num_pairsample;
|
||||
// fix weight of each list
|
||||
float fix_list_weight;
|
||||
// loss function
|
||||
LossType loss;
|
||||
};
|
||||
};
|
||||
|
||||
namespace regrank{
|
||||
class LambdaRankObj : public IObjFunction{
|
||||
public:
|
||||
LambdaRankObj(void){
|
||||
loss_.loss_type = LossType::kLogisticRaw;
|
||||
}
|
||||
virtual ~LambdaRankObj(){}
|
||||
virtual void SetParam(const char *name, const char *val){
|
||||
if( !strcmp( "loss_type", name ) ) loss_.loss_type = atoi( val );
|
||||
if( !strcmp( "fix_list_weight", name ) ) fix_list_weight_ = (float)atof( val );
|
||||
}
|
||||
private:
|
||||
LossType loss_;
|
||||
float fix_list_weight_;
|
||||
// number of samples peformed for each instance
|
||||
int num_pairsample;
|
||||
// fix weight of each elements in list
|
||||
float fix_list_weight;
|
||||
protected:
|
||||
/*! \brief helper information in a list */
|
||||
struct ListEntry{
|
||||
@ -311,323 +297,39 @@ namespace xgboost{
|
||||
// constructor
|
||||
ListEntry(float pred, float label, unsigned rindex): pred(pred),label(label),rindex(rindex){}
|
||||
// comparator by prediction
|
||||
inline bool operator<(const ListEntry &p) const{
|
||||
return pred > p.pred;
|
||||
inline static bool CmpPred(const ListEntry &a, const ListEntry &b){
|
||||
return a.pred > b.pred;
|
||||
}
|
||||
// comparator by label
|
||||
inline static bool CmpLabel(const ListEntry &a, const ListEntry &b){
|
||||
return a.label > b.label;
|
||||
}
|
||||
};
|
||||
|
||||
class Triple{
|
||||
public:
|
||||
float pred_;
|
||||
float label_;
|
||||
int index_;
|
||||
|
||||
Triple(){
|
||||
|
||||
}
|
||||
|
||||
Triple(const Triple& t){
|
||||
pred_ = t.pred_;
|
||||
label_ = t.label_;
|
||||
index_ = t.index_;
|
||||
}
|
||||
|
||||
Triple(float pred, float label, int index) :pred_(pred), label_(label), index_(index){
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
static inline bool TripleComparer(const Triple &a, const Triple &b){
|
||||
return a.pred_ > b.pred_;
|
||||
}
|
||||
|
||||
/* \brief Sorted tuples of a group by the predictions, and
|
||||
* the fields in the return tuples successively are predicions,
|
||||
* labels, and the original index of the instance in the group
|
||||
*/
|
||||
inline void GetSortedTuple(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
int group, std::vector< Triple > &sorted_triple){
|
||||
sorted_triple.resize(group_index[group + 1] - group_index[group]);
|
||||
for (unsigned j = group_index[group]; j < group_index[group + 1]; j++){
|
||||
sorted_triple[j - group_index[group]] = Triple(preds[j], labels[j], j);
|
||||
}
|
||||
|
||||
std::sort(sorted_triple.begin(), sorted_triple.end(), TripleComparer);
|
||||
}
|
||||
|
||||
/*
|
||||
* \brief Get the position of instances after sorted
|
||||
* \param sorted_triple the fields successively are predicions,
|
||||
* labels, and the original index of the instance in the group
|
||||
* \param start the offset index of the group
|
||||
* \param index_remap a vector indicating the new position of each instance after sorted,
|
||||
* for example,[1,0] means that the second instance is put ahead after sorted
|
||||
*/
|
||||
inline void GetIndexMap(std::vector< Triple > sorted_triple, int start, std::vector<int> &index_remap){
|
||||
index_remap.resize(sorted_triple.size());
|
||||
for (size_t i = 0; i < sorted_triple.size(); i++){
|
||||
index_remap[sorted_triple[i].index_ - start] = i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
virtual void GetLambda(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
const std::vector< std::pair<int, int> > &pairs, std::vector<float> &lambda, int group) = 0;
|
||||
|
||||
inline void GetGroupGradient(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess,
|
||||
const std::vector< std::pair<int, int> > pairs,
|
||||
int group){
|
||||
|
||||
std::vector<float> lambda;
|
||||
GetLambda(preds, labels, group_index, pairs, lambda, group);
|
||||
|
||||
float pred_diff, delta;
|
||||
float first_order_gradient, second_order_gradient;
|
||||
|
||||
for (size_t i = 0; i < pairs.size(); i++){
|
||||
delta = lambda[i];
|
||||
pred_diff = loss_.PredTransform(preds[pairs[i].first] - preds[pairs[i].second]);
|
||||
first_order_gradient = delta * loss_.FirstOrderGradient(pred_diff, 1.0f);
|
||||
second_order_gradient = 2 * delta * loss_.SecondOrderGradient(pred_diff, 1.0f);
|
||||
hess[pairs[i].first] += second_order_gradient;
|
||||
grad[pairs[i].first] += first_order_gradient;
|
||||
hess[pairs[i].second] += second_order_gradient;
|
||||
grad[pairs[i].second] -= first_order_gradient;
|
||||
|
||||
}
|
||||
|
||||
if( fix_list_weight_ != 0.0f ){
|
||||
float scale = fix_list_weight_ / (group_index[group+1] - group_index[group]);
|
||||
for(unsigned j = group_index[group]; j < group_index[group+1]; ++j ){
|
||||
grad[j] *= scale;
|
||||
hess[j] *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void GenPairs(const std::vector<float>& preds,
|
||||
const std::vector<float>& labels,
|
||||
const int &start, const int &end,
|
||||
std::vector< std::pair<int,int> > &pairs){
|
||||
|
||||
random::Random rnd; rnd.Seed(0);
|
||||
std::vector< std::pair<float,unsigned> > rec;
|
||||
for(int j = start; j < end; ++j ){
|
||||
rec.push_back( std::make_pair(labels[j], j) );
|
||||
}
|
||||
|
||||
std::sort( rec.begin(), rec.end(), CmpFirst );
|
||||
// enumerate buckets with same label, for each item in the list, grab another sample randomly
|
||||
for( unsigned i = 0; i < rec.size(); ){
|
||||
unsigned j = i + 1;
|
||||
while( j < rec.size() && rec[j].first == rec[i].first ) ++ j;
|
||||
// bucket in [i,j), get a sample outside bucket
|
||||
unsigned nleft = i, nright = rec.size() - j;
|
||||
for( unsigned pid = i; pid < j; ++ pid ){
|
||||
unsigned ridx = static_cast<int>( rnd.RandDouble() * (nleft+nright) );
|
||||
if( ridx < nleft ){
|
||||
// get the samples in left side, ridx is pos sample
|
||||
pairs.push_back(std::make_pair(rec[ridx].second, rec[pid].second));
|
||||
}else{
|
||||
// get samples in right side, ridx is negsample
|
||||
pairs.push_back(std::make_pair(rec[pid].second, rec[ridx+j-i].second));
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
/*! \brief a pair in the lambda rank */
|
||||
struct LambdaPair{
|
||||
/*! \brief positive index: this is a position in the list */
|
||||
unsigned pos_index;
|
||||
/*! \brief negative index: this is a position in the list */
|
||||
unsigned neg_index;
|
||||
/*! \brief weight to be filled in */
|
||||
float weight;
|
||||
LambdaPair( unsigned pos_index, unsigned neg_index ):pos_index(pos_index),neg_index(neg_index),weight(1.0f){}
|
||||
};
|
||||
/*!
|
||||
* \brief get lambda weight for existing pairs
|
||||
* \param list a list that is sorted by pred score
|
||||
* \param pairs record of pairs, containing the pairs to fill in weights
|
||||
*/
|
||||
virtual void GetLambdaWeight( const std::vector<ListEntry> &sorted_list, std::vector<LambdaPair> &pairs ) = 0;
|
||||
};
|
||||
};
|
||||
|
||||
namespace regrank{
|
||||
class PairwiseRankObj: public LambdaRankObj{
|
||||
public:
|
||||
virtual void GetGradient(const std::vector<float>& preds,
|
||||
const DMatrix::Info &info,
|
||||
int iter,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess) {
|
||||
grad.resize(preds.size()); hess.resize(preds.size());
|
||||
const std::vector<unsigned> &group_index = info.group_ptr;
|
||||
utils::Assert(group_index.size() != 0 && group_index.back() == preds.size(), "rank loss must have group file");
|
||||
|
||||
for (size_t i = 0; i < group_index.size() - 1; i++){
|
||||
std::vector< std::pair<int,int> > pairs;
|
||||
GenPairs(preds, info.labels, group_index[i], group_index[i + 1],pairs);
|
||||
GetGroupGradient(preds, info.labels, group_index, grad, hess, pairs, i);
|
||||
}
|
||||
}
|
||||
virtual const char* DefaultEvalMetric(void) {
|
||||
return "auc";
|
||||
}
|
||||
virtual ~PairwiseRankObj(void){}
|
||||
virtual void GetLambdaWeight( const std::vector<ListEntry> &sorted_list, std::vector<LambdaPair> &pairs ){}
|
||||
};
|
||||
|
||||
class LambdaRankObj_NDCG : public LambdaRankObj{
|
||||
|
||||
static inline float CalcDCG(const std::vector< float > &rec) {
|
||||
double sumdcg = 0.0;
|
||||
for (size_t i = 0; i < rec.size(); i++){
|
||||
const unsigned rel = static_cast<unsigned>(rec[i]);
|
||||
if (rel != 0){
|
||||
sumdcg += logf(2.0f) *((1 << rel) - 1) / logf(i + 2);
|
||||
}
|
||||
}
|
||||
return static_cast<float>(sumdcg);
|
||||
}
|
||||
|
||||
/*
|
||||
* \brief Obtain the delta NDCG if trying to switch the positions of instances in index1 or index2
|
||||
* in sorted triples. Here DCG is calculated as sigma_i 2^rel_i/log(i + 1)
|
||||
* \param sorted_triple the fields are predition,label,original index
|
||||
* \param index1,index2 the instances switched
|
||||
* \param the IDCG of the list
|
||||
*/
|
||||
inline float GetLambdaNDCG(const std::vector< Triple > sorted_triple,
|
||||
int index1,
|
||||
int index2, float IDCG){
|
||||
double original = (1 << static_cast<int>(sorted_triple[index1].label_)) / log(index1 + 2)
|
||||
+ (1 << static_cast<int>(sorted_triple[index2].label_)) / log(index2 + 2);
|
||||
double changed = (1 << static_cast<int>(sorted_triple[index2].label_)) / log(index1 + 2)
|
||||
+ (1 << static_cast<int>(sorted_triple[index1].label_)) / log(index2 + 2);
|
||||
double ans = (original - changed) / IDCG;
|
||||
if (ans < 0) ans = -ans;
|
||||
return static_cast<float>(ans);
|
||||
}
|
||||
|
||||
|
||||
inline float GetIDCG(const std::vector< Triple > sorted_triple){
|
||||
std::vector<float> labels;
|
||||
for (size_t i = 0; i < sorted_triple.size(); i++){
|
||||
labels.push_back(sorted_triple[i].label_);
|
||||
}
|
||||
|
||||
std::sort(labels.begin(), labels.end(), std::greater<float>());
|
||||
return CalcDCG(labels);
|
||||
}
|
||||
|
||||
inline void GetLambda(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
const std::vector< std::pair<int, int> > &pairs, std::vector<float> &lambda, int group){
|
||||
std::vector< Triple > sorted_triple;
|
||||
std::vector<int> index_remap;
|
||||
float IDCG;
|
||||
|
||||
GetSortedTuple(preds, labels, group_index, group, sorted_triple);
|
||||
GetIndexMap(sorted_triple, group_index[group], index_remap);
|
||||
IDCG = GetIDCG(sorted_triple);
|
||||
|
||||
lambda.resize(pairs.size());
|
||||
for (size_t i = 0; i < pairs.size(); i++){
|
||||
lambda[i] = GetLambdaNDCG(sorted_triple,
|
||||
index_remap[pairs[i].first],index_remap[pairs[i].second],IDCG);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class LambdaRankObj_MAP : public LambdaRankObj{
|
||||
class Quadruple{
|
||||
public:
|
||||
/* \brief the accumulated precision */
|
||||
float ap_acc_;
|
||||
/* \brief the accumulated precision assuming a positive instance is missing*/
|
||||
float ap_acc_miss_;
|
||||
/* \brief the accumulated precision assuming that one more positive instance is inserted ahead*/
|
||||
float ap_acc_add_;
|
||||
/* \brief the accumulated positive instance count */
|
||||
float hits_;
|
||||
|
||||
Quadruple(){}
|
||||
|
||||
Quadruple(const Quadruple& q){
|
||||
ap_acc_ = q.ap_acc_;
|
||||
ap_acc_miss_ = q.ap_acc_miss_;
|
||||
ap_acc_add_ = q.ap_acc_add_;
|
||||
hits_ = q.hits_;
|
||||
}
|
||||
|
||||
Quadruple(float ap_acc, float ap_acc_miss, float ap_acc_add, float hits
|
||||
) :ap_acc_(ap_acc), ap_acc_miss_(ap_acc_miss), ap_acc_add_(ap_acc_add), hits_(hits){
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/*
|
||||
* \brief Obtain the delta MAP if trying to switch the positions of instances in index1 or index2
|
||||
* in sorted triples
|
||||
* \param sorted_triple the fields are predition,label,original index
|
||||
* \param index1,index2 the instances switched
|
||||
* \param map_acc a vector containing the accumulated precisions for each position in a list
|
||||
*/
|
||||
inline float GetLambdaMAP(const std::vector< Triple > sorted_triple,
|
||||
int index1, int index2,
|
||||
std::vector< Quadruple > &map_acc){
|
||||
if (index1 == index2 || sorted_triple[index1].label_ == sorted_triple[index2].label_) return 0.0;
|
||||
if (index1 > index2) std::swap(index1, index2);
|
||||
float original = map_acc[index2].ap_acc_; // The accumulated precision in the interval [index1,index2]
|
||||
if (index1 != 0) original -= map_acc[index1 - 1].ap_acc_;
|
||||
float changed = 0;
|
||||
if (sorted_triple[index1].label_ < sorted_triple[index2].label_){
|
||||
changed += map_acc[index2 - 1].ap_acc_add_ - map_acc[index1].ap_acc_add_;
|
||||
changed += (map_acc[index1].hits_ + 1.0f) / (index1 + 1);
|
||||
}
|
||||
else{
|
||||
changed += map_acc[index2 - 1].ap_acc_miss_ - map_acc[index1].ap_acc_miss_;
|
||||
changed += map_acc[index2].hits_ / (index2 + 1);
|
||||
}
|
||||
float ans = (changed - original) / (map_acc[map_acc.size() - 1].hits_);
|
||||
if (ans < 0) ans = -ans;
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* \brief preprocessing results for calculating delta MAP
|
||||
* \return The first field is the accumulated precision, the second field is the
|
||||
* accumulated precision assuming a positive instance is missing,
|
||||
* the third field is the accumulated precision assuming that one more positive
|
||||
* instance is inserted, the fourth field is the accumulated positive instance count
|
||||
*/
|
||||
inline void GetMAPAcc(const std::vector< Triple > sorted_triple,
|
||||
std::vector< Quadruple > &map_acc){
|
||||
map_acc.resize(sorted_triple.size());
|
||||
float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
|
||||
for (size_t i = 1; i <= sorted_triple.size(); i++){
|
||||
if ((int)sorted_triple[i - 1].label_ == 1) {
|
||||
hit++;
|
||||
acc1 += hit / i;
|
||||
acc2 += (hit - 1) / i;
|
||||
acc3 += (hit + 1) / i;
|
||||
}
|
||||
map_acc[i-1] = Quadruple(acc1, acc2, acc3, hit);
|
||||
}
|
||||
}
|
||||
|
||||
inline void GetLambda(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<unsigned> &group_index,
|
||||
const std::vector< std::pair<int, int> > &pairs, std::vector<float> &lambda, int group){
|
||||
std::vector< Triple > sorted_triple;
|
||||
std::vector<int> index_remap;
|
||||
std::vector< Quadruple > map_acc;
|
||||
|
||||
GetSortedTuple(preds, labels, group_index, group, sorted_triple);
|
||||
GetIndexMap(sorted_triple, group_index[group], index_remap);
|
||||
GetMAPAcc(sorted_triple, map_acc);
|
||||
|
||||
lambda.resize(pairs.size());
|
||||
for (size_t i = 0; i < pairs.size(); i++){
|
||||
lambda[i] = GetLambdaMAP(sorted_triple,
|
||||
index_remap[pairs[i].first], index_remap[pairs[i].second], map_acc);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user